Феномен науки. Кибернетический подход к эволюции

         

Познания древних в геометрии


Что же знали египтяне из геометрии? — Правильные формулы для площади треугольника, прямоугольника, трапеции. Площадь неправильного четырехугольника, как можно судить по одному сохранившемуся документу, вычислялась так: полусумма двух противолежащих сторон умножалась на полусумму двух других противолежащих сторон. Формула эта грубо неверна (за исключением того случая, когда четырехугольник прямоугольный и когда она не нужна). Ни в каком разумном смысле ее нельзя назвать даже приближенной. Это, по-видимому, первый зафиксированный историей пример утверждения, которое выводится не из сравнения с опытными данными, а из «общих соображений». Площадь круга египтяне вычисляли, возводя в квадрат 8/9 его диаметра. Это соответствует приближенному значению числа ?, отличающемуся примерно на 1% от истинного значения.

Объемы параллелепипедов и цилиндров вычислялись умножением площади основания на высоту. Высшим из известных нам достижений египетской геометрии является правильное вычисление объема усеченной пирамиды с квадратным основанием (Московский папирус). Оно следует формуле

V = (a2 + ab + b2) × h/3,

где h — высота, a и b — стороны верхнего и нижнего основания.

Наши сведения о познаниях древних вавилонян в математике скудны и отрывочны, но общее представление по ним все-таки составить можно.

Совершенно точно известно, что вавилоняне знали «теорему Пифагора», т. е., конечно, не теорему, а самый факт, что сумма квадратов катетов равна квадрату гипотенузы. Как и египтяне, они правильно вычисляли площади треугольников и трапеций. Длину окружности и площадь круга они вычисляли, пользуясь значением ? = 3, что гораздо хуже, чем египетское приближение. Объем усеченной пирамиды или конуса вавилоняне вычисляли, умножая полусумму площадей оснований на высоту (неверная формула).



Предикаты


Конструкция, сопоставляющая нескольким объектам высказывание, называется предикатом. Предикаты делятся на одноместные, двухместные, трехместные и т.д. в соответствии с числом объектов, которого они требуют. Для записи их используют функциональные обозначения. Предикат можно записать в виде функции с незаполненными местами для аргументов, например

P( ), L( , ), I( , , )

или же в виде

P(x), L(z, y), I(x, y, z)

оговорив, что x, y, z — предметные переменные, т. е. символы, которые в конечном счете должны быть заменены на объекты, но какие — пока неизвестно. Впрочем, вторая форма изображает, строго говоря, уже не предикат, а высказывание, содержащее предметные переменные. Вместо больших букв мы будем также использовать словосочетания в кавычках, например,

«красный»(x), «между»(x, у, z)



и специальные математические знаки, например,

<(х, у).

Одноместный предикат выражает свойство объекта, предикат более чем с одним аргументом — отношение между объектами. Если места для аргументов в предикате заполнены, то мы имеем дело с высказыванием, утверждающим наличие данного свойства или отношения. Высказывание

«красный»(«мяч»)

означает, что «мяч» обладает свойством «красный». Конструкция

<(a, b)

равнозначна соотношению (неравенству) a < b.

Соединяя предикатные конструкции логическими связками, мы получаем более сложные высказывания. Например, соотношение |z| > 1, которое мы раньше записывали, не расчленяя высказываний на элементы, мы запишем теперь в виде

>(z, 1) ? <(z, -1).



Русское издание этой книги выходит


Русское издание этой книги выходит через двадцать с лишним лет после ее написания. За это время наука существенно продвинулась вперед. Достаточно вспомнить раскрытие генетического кода, открытия в астрофизике, новую теорию элементарных частиц. Персональные компьютеры вошли чуть ли не в каждый дом. Между тем книга выходит в том виде, в каком она была подготовлена к печати в 1970 г. Если бы я стал что-то добавлять к ней, то это превратилось бы, в конечном счете, в написание новой книги, гораздо большей по объему, и она включала бы в себя старую практически целиком и без перемен. Ибо основная тема книги — Эволюция Вселенной как последовательность метасистемных переходов — не пострадала от времени. Напротив, появились новые указания на плодотворность этого подхода. В настоящее время мы с группой коллег начали работу над проектом PRINCIPIA CYBERNETICA, который включает дальнейшее развитие этих идей. Некоторое представление об этом проекте дает написанная мною совместно с Клиффом Джослиным статья “Кибернетический манифест”. Эта статья также включает краткое изложение основных идей книги и включена в качестве приложения к настоящему изданию.
“Феномен науки” вышел в английском и японском переводах. Я очень рад, что он может, наконец, выйти и в русском оригинале.
Одно место в “Феномене науки” требует комментария в свете последних достижений физики. В разделе “Сумасшедшие теории и метанаука” я высказал мысль, что для того, чтобы разрешить трудности в современной теории элементарных частиц, надо разработать методы “метанауки”, т. е. теории о том, как строить теории. Причину я усматривал в том, что основные понятия физики на ранних стадиях ее развития брались из нашей интуиции макроскопического мира. Но для познания законов микромира (а точнее, для построения математических моделей этого мира) наша “макроскопическая” интуиция неадекватна. Если интуиция не дает нам впрямую тех “колесиков”, из которых можно строить модели микромира, то нам нужны какие-то теории о том, как эти колесики выбирать и как модели строить. Это и будет метанаука.
С тех пор как была написана моя книга, физика элементарных частиц сделала огромный шаг вперед — и без всякой метанауки, а лишь на основе старой идеи, что одни частицы могут как бы состоять из других, более элементарных частиц. Тем не менее я полагаю, что моя логика остается в силе, и если не на данной, то на какой-то последующей стадии развития точных наук метатеоретические методы докажут свою плодовитость.
В.Ф.Турчин
Обнинск, август 1990 г.

популярной литературы совсем немного книг,


Среди огромной массы научной и научно- популярной литературы совсем немного книг, которые можно считать вехами на пути человечества в формировании целостного и оптимистического мировоззрения, т.е. книг философских в истинном смысле этого слова. Книга, которую держит в руках читатель, несомненно, принадлежит к этой редкой категории. И это не случайно, так как ее автор являет собой редкий тип ученого-естественника, который философствует не потому, что это модно, престижно или, скажем, принято. Он философствует для того, чтобы привести в прямое соответствие философские знания и практику собственной жизни.
Автор излагает оригинальную теорию эволюции, базируясь на современных кибернетических концепциях и на одной основной идее, а именно — идее метасистемного перехода как кванта эволюции. Внешне все очень просто. Если у вас есть некоторая исходная кибернетическая система (амеба, человек, общество и т.п.), то метасистемный переход — это переход к некоторой другой системе, включающей в себя множество систем типа исходной. По сути здесь всегда возникает новый уровень управления. Примеры: переход от простейших одноклеточных организмов к многоклеточным, возникновение нервной системы, мозга, речи и т.д.
Но заслуга автора не ограничивается тем, что он высказывает идею метасистемного перехода как кванта эволюции. Он прослеживает с позиции этой идеи эволюцию на Земле от простейших макромолекул до современной науки (математики, философии) и культуры. Делает он это столь ярко и интересно, что не остается никаких сомнений в огромной мощности исходной идеи. По сути своей “Феномен науки” — глубокая научно-философская книга, но написана она как роман и, чтобы прочесть ее, достаточно любопытства и знаний в объеме средней школы.
Читатель, который возьмет на себя труд последовать за автором, узнает массу интереснейших вещей. Он, в частности, узнает, каким видится мир глазами лягушки, чем же все-таки (одним и принципиальным) отличается мышление животного (собаки, обезьяны) от мышления человека, что должно было произойти в мышлении человека, чтобы оно из “примитивного” стало “современным”, что такое юмор и на какой стадии эволюции он возникает, что такое научная теория и чем отличается “хорошая” теория от “плохой”, много ли на самом деле зависит от простого человека (“винтика”) в обществе, что есть Добро, Высшее благо и Высшая цель, и еще многое другое.


Сказанного, думаю, достаточно, чтобы читатель получил представление о предмете и характере книги. Углубляться в детали нет смысла, так как при этом пришлось бы невольно и безнадежно конкурировать с авторским текстом, одновременно паразитируя на нем. Поэтому будем считать своей дальнейшей задачей — рассказать немного об авторе и коротко осветить историю его диссидентства. Ведь когда писалась книга, В.Ф.Турчин был советским гражданином, а с октября 1977 г. он живет в Америке, работает профессором в области компьютерных наук в Нью-Йоркском городском университете и в 1982 г. получил гражданство США.
В.Ф.Турчин родился в 1931 г. в Москве. Окончил физический факультет МГУ и с 1953 по 1964 г. работал под Москвой в Обнинске в Физико-энергетическом институте, где изучал рассеяние медленных нейтронов в жидкостях и твердых телах и защитил докторскую диссертацию. В 33 года он уже был известным физиком-теоретиком с большими перспективами.
И тем не менее в 1964 г. В.Ф.Турчин оставляет физику, переходит в Институт прикладной математики АН СССР (ныне Институт им. М.В.Келдыша) и погружается в информатику. Намек на причину такой рискованной смены среды содержит предпоследний абзац следующего далее авторского предисловия. Он оставил науку ради метанауки.
В информатике, как и в физике, ему сопутствует успех. Он создает новый язык программирования — язык Рефал, на котором удобно описываются алгоритмические языки, трансляторы, символьные математические преобразования и многое другое. Более того, вокруг В.Ф.Турчина складывается неформальная научная школа — научное направление, которое живет и успешно развивается до сих пор, даже после отъезда, а точнее изгнания его лидера из СССР.
Читатель уже мог догадаться, что человек с таким научно-философским диапазоном, как В.Ф.Турчин, обычно имеет четкую точку зрения на социально-политические процессы в мире и тем более в своей стране. К чести В.Ф.Турчина, он не только имел такую точку зрения, но и не боялся ее высказывать.


В 1968 г. он написал статью “Инерция страха” и предложил ее для публикации журналу “Коммунист”. В ней, в частности, доказывалось, что тоталитарное общество обречено, и предлагался вариант перехода от тоталитарного общества к свободному. (Корни перестройки, как видите, можно обнаружить много раньше 80-х годов.) Статья не была напечатана, но естественно имела “последствия” для ее автора. Небольшое количество экземпляров ходило в “самиздате”; в 1976 г. статья была переработана в солидную книгу “Инерция страха. Социализм и тоталитаризм”, которая годом позже была опубликована в США на русском, а затем и на английском языках.
Одним из первых читателей “Инерции страха” был А.Д.Сахаров. С 1968 г. общественная деятельность этих людей протекала совместно. Именно по инициативе В.Ф.Турчина в 1970 г. было написано и направлено в правительство письмо, о котором рассказал А.Д.Сахаров в своих воспоминаниях. В письме обращалось внимание на необходимость либерализации и демократизации общества, поскольку без этого экономике страны угрожает полный крах.
Но вернемся к книге “Феномен науки”. Она была написана в 1970 г. по договору с издательством “Советская Россия”. Хотя она и собрала самые положительные рецензии, три года тянулась волокита с ее набором. В редакции “не понимали”, как можно положить на стол главного редактора книгу с такой последней главой. Слишком очевидным было противоречие духу марксистско-ленинской философии. И все же к 1973 г. книга была набрана и прошла стадию верстки. До выхода в свет оставалось совсем немного, но... началась кампания против А.Д.Сахарова. В центральной прессе публикуется открытое письмо, клеймящее его позором, за подписями 40 членов Академии наук... В.Ф.Турчин выступает на пресс-конференции перед иностранными корреспондентами в защиту А.Д.Сахарова. Вскоре после этого ему звонят и, извиняясь, объясняют, что в типографии то ли рухнула штукатурка с потолка, то ли рухнул весь потолок как раз на набор книги, то ли сам набор рухнул с полки на пол, но восстановить его нет никакой возможности.


Вот некоторые обстоятельства, проливающие свет на то, почему переводы книги на английский и японский языки вышли много раньше русского оригинала.
В начале 1973 г. В.Ф.Турчин переходит в ЦНИПИАС (Центральный научно-исследовательский проектный институт автоматизации в строительстве) на должность заведующего лабораторией. Здесь сыграли роль два соображения. Во-первых, он считал свое новое место работы менее режимным и, следовательно, более совместимым с теми контактами, которые неизбежно возникали в связи с его правозащитной деятельностью. Во-вторых, в ЦНИПИАС были обещаны более широкие возможности для организационного оформления научной школы В.Ф.Турчина.
В апреле 1974 г. В.Ф.Турчин становится председателем московского отделения Amnesty International — группы “Международная амнистия”, выступающей в защиту узников совести во всех странах независимо от их политической системы. В том же 1974 г. ученый совет ЦНИПИАС не переаттестовывает его в должности, после чего его “клеймят позором” на собрании сотрудников и увольняют. Все дальнейшие попытки получить хоть какую-нибудь работу были тщетны. Семья с двумя сыновьями оказалась на зарплате жены Т.И.Турчиной — младшего научного сотрудника института Нефтехимсинтеза им. Губкина.
В декабре 1976 г. В.Ф.Турчин получает “последнее предупреждение” от КГБ: либо он уезжает, либо его ждет арест. Обыск и допросы к тому времени он уже прошел. В 1977 г. начались аресты членов Хельсинкской группы: Ю.Орлова, А.Гинзбурга, А.Щаранского и др. Хотя В.Ф.Турчин и не был формально членом Хельсинкской группы, но готовил материалы для нее и участвовал в пресс-конференции Хельсинкской группы в качестве представителя Международной амнистии. Пришлось делать “выбор”. Кто был близко знаком с В.Ф.Турчиным, знает, как он не хотел уезжать. Вот вкратце те обстоятельства, при которых наша наука потеряла Турчина, а американская — нашла.
Для полноты картины следует еще сказать, что В.Ф.Турчин — веселый, жизнерадостный, остроумный человек, блестящий рассказчик.


Общение с ним — это всегда радость. Он был капитаном команды КВН города Обнинска в 1963 г., когда КВН только начинался. Команда под его водительством победила команду из Дубны! Он же был одним из составителей сборников “Физики шутят” и “Физики продолжают шутить”, доставляющих своим читателям много веселых минут и ставших давно библиографической редкостью.
Читатель! Вас ждет встреча с весьма неординарным автором, ученым и гражданином. Счастливого пути!
В заключение хочу выразить благодарность всем, кто содействовал изданию книги. Особую благодарность я выражаю нескольким людям. А.Б.Ходулев установил на компьютере и настроил систему LATEX, которой я пользовался при подготовке оригинал-макета книги. Он же был моим учителем по системе и безотказным консультантом. Т.Н.Малышева и Н.Б.Дзалаева взяли на себя очень большую работу по первоначальному вводу в компьютер текста книги (в системе LEXICON). Самую разнообразную помощь я получал от Анд.В.Климова, который, в частности, отлично выполнял функции “канала связи” с “удаленным” автором.
Коллега В.Ф.Турчина
по Институту прикладной математики
В.С.Штаркман
февраль 1992 г.

Представления


Редупликация различных подсистем нервной сети может породить множество различных групп классификаторов, «повисающих в воздухе». Среди них могут появиться дубликаты целых этажей иерархии, состояния которых в точности соответствуют состоянию тех «осведомленных» классификаторов, которые получают информацию от рецепторов. Соответствуют, но не совпадают. Это мы видим на примере нейронов A и Z на рис. 2.9,к. В сложных системах неосведомленные дубликаты осведомленных классификаторов могут хранить большое количество информации. Состояния этих дубликатов мы будем называть представлениями, отдавая себе ясный отчет, что тем самым мы даем определенную кибернетическую интерпретацию этому психологическому понятию. Очевидно, имеет место тесная связь между представлениями и ситуациями, которые ведь суть не что иное, как состояния аналогичных классификаторов, но получающих информацию от рецепторов. Цель представляет собой частный случай представления, а точнее тот случай, когда сравнение постоянного представления и меняющейся ситуации используется для выработки действия, сближающего их друг с другом. Описанное выше гипотетическое животное обожает температуру 16?, и «светлый образ» этой блаженной ситуации, которая есть определенная частота импульсов нейрона A, живет в ее памяти в виде точно такой же частоты импульсов нейрона Z.

Это очень примитивное представление. Чем выше организована «осведомленная» часть нервной системы, тем сложнее и ее дубликаты (мы будем их называть фиксаторами представлений) и тем разнообразнее представления. Так как классификаторы могут принадлежать к разным уровням иерархии и ситуация может быть выражена в разных системах понятий, представления также могут различаться своим «понятийным языком», ибо они могут быть состояниями фиксаторов разных уровней. Далее, степень устойчивости состояний фиксаторов представлений также может быть весьма различной. Поэтому представления сильно отличаются по своей конкретности и стабильности. Они могут быть точными и конкретными, почти чувственно воспринимаемыми. Крайним случаем здесь является галлюцинация, которая субъективно воспринимается как реальность и на которую организм реагирует так же, как на соответствующую ситуацию. С другой стороны, представления могут быть очень приблизительными как из-за своей неустойчивости, так и из-за своей абстрактности. Последний случай часто встречается в художественном и научном творчестве, когда представления выступают как цель деятельности. Человек смутно чувствует, что ему надо, и пытается воплотить это в твердой предметной форме. У него долго ничего не получается, потому что его представления не обладают необходимой конкретностью. Однако в один прекрасный момент (и это действительно прекрасный момент!) он вдруг добивается своей цели и ясно осознает, что он сделал именно то, что хотел.



Прикладная арифметика


Магистральный путь к современной науке лежит через культуру древней Греции, которая наследовала достижения египтян и вавилонян. Остальные влияния и связи (в частности, передаточная функция, выполненная арабами) были более или менее существенны, но решающего значения, по-видимому, не имели. Истоки египетской и шумеро-вавилонской цивилизаций теряются во мраке первобытных культур. Поэтому в нашем обзоре истории науки мы ограничимся этими тремя культурами древности.

О записи чисел египтянами и вавилонянами мы уже говорили. Надо только добавить несколько слов о том, как египтяне записывали дроби. Система их была с современной точки зрения чрезвычайно оригинальна и столь же неудобна. Египтяне имели специальную форму записи только для так называемых основных дробей, т. е. полученных делением единицы на целое число, и еще двух простых дробей, имевших с древних времен особые иероглифы, а именно 2/3 и 3/4. Впрочем в позднейших папирусах особое обозначение для 3/4 исчезло. Чтобы записать основную дробь, надо было над обычным числом поставить знак

, обозначающий «часть», Так
= 1/12.

Остальные дроби египтяне разлагали на сумму нескольких основных дробей. Например, 3/8 записывалось как 1/4 + 1/8, а 2/7 в виде 1/4 + 1/28. Для результата деления 2 на 29 египетская таблица давала разложение 2/29 = 1/24 + 1/58 + 1/174 + 1/232.

На технике счета египтян и вавилонян мы останавливаться не будем. Достаточно сказать, что те и другие умели производить четыре действия арифметики над всеми числами (целыми, дробными или смешанными), которые встречались им на практике. Для действий с дробями они пользовались вспомогательными математическими таблицами; это таблицы обратных чисел у вавилонян и таблицы основных дробей — у египтян. Египтяне записывали промежуточные результаты на папирусе, вавилоняне, по-видимому, выполняли действия на абаке, поэтому детали их техники остались неизвестными.

Что же считали древние математики? Есть один отрывок из египетского папируса времен Нового Царства (1500–500 гг.
до н. э.), в котором очень образно и с большой дозой юмора описывается деятельность царских писцов и который по этой причине неизменно приводится во всех книгах по истории математики. Не избежим и мы этой участи. Вот этот отрывок2:

Я хочу объяснить тебе, что это такое, когда ты говоришь: «Я, писец, дающий приказы армии»... Я ставлю тебя в тупик, когда приношу тебе повеление от твоего господина, тебе — его царскому писцу... мудрому писцу, поставленному во главе этого войска. Надо сделать наклонную насыпь в 730 локтей длины и 55 локтей ширины; она состоит из 120 отдельных ящиков и покрывается перекладинами и тростником. На верхнем конце она имеет высоту в 60 локтей, а в середине — 30 локтей. Уклон ее дважды по 15 локтей, а настил 5 локтей. Спрашивают у военачальников, сколько понадобится кирпичей, и у всех писцов, и ни один ничего не знает. Все они надеются на тебя и говорят: «Ты искусный писец, мой друг, сосчитай это для нас поскорей. Имя твое славится»... Сколько же нужно кирпичей?

Текст этот, несмотря на свою популярность, не слишком вразумителен. Однако, как бы мы его ни толковали, он дает представление о тех задачах, которые приходилось решать египетским писцам. Мы видим, в частности, что они должны были уметь вычислять (сколь верно — это другой вопрос) площади и объемы. И действительно, египтяне обладали некоторыми познаниями в геометрии. Эти познания, по весьма обоснованному мнению древних греков, возникли в самом Египте. Один из философов школы Аристотеля начинает свое сочинение словами3:

Так как нам необходимо здесь обозреть начало наук и искусств, то мы сообщаем, что геометрия, по свидетельству весьма многих, была открыта египтянами и возникла при измерении Земли. Это измерение было необходимо вследствие разлития реки Нила, постоянно смывавшего границы. Нет ничего удивительного, что эта наука, как и другие, возникла из потребностей человека. Всякое возникающее знание из несовершенного переходит в совершенное. Зарождаясь путем чувственного восприятия, оно постоянно становится предметом нашего рассмотрения и, наконец, делается достоянием нашего разума.

Деление знания на несовершенное и совершенное и определенная извинительная интонация по поводу «низкого» происхождения науки — это, конечно, от греческого философа. Египтяне, как и вавилоняне, не знали ничего подобного. Для них знание было чем-то вполне однородным. Они умели делать геометрические построения и знали формулы для площади треугольника и круга, как умели стрелять из лука и знали свойства целебных трав и даты разлива Нила. Геометрии как искусства выводить «истинные» формулы у них не было, она существовала, по выражению Б. Ван дер Вардена, лишь как раздел прикладной арифметики. Очевидно, при получении формул они использовали некоторые наводящие соображения, однако эти соображения мало кого интересовали. На отношение к формуле они не влияли.


Проблема Высшего Блага


Как и когда возникает проблема Высшего Блага и Высшей Цели? Очевидно, у животных ее не было. Не было ее и на ранних этапах развития человеческого общества. До поры до времени для человека, как и для животного, благом является то, что доставляет удовольствие, и иерархии удовольствий соответствует иерархия целей, вершину которой образуют инстинкты сохранения жизни и продолжения рода. Понятие цели и понятие блага вообще неотделимы друг от друга, это два аспекта одного понятия. Человек стремится к благу по определению и называет благом то, к чему он стремится. На стадии, когда благо отождествляется с удовольствием, человек в нравственном отношении ничем не отличается от животного, нравственных проблем для него не существует. И здесь дело не в природе удовольствия, а в его заданности, в том, что критерий удовольствия есть высшая управляющая система, которая меняет цели, сама не испытывая изменений. Уже с чисто биологической точки зрения удовольствия человека отличаются от удовольствий животных — вспомним, например, о чувстве прекрасного, а по мере усложнения социальной структуры человек приобретает новые удовольствия, которые незнакомы животным. Тем не менее, проблемы Высшего Блага это не создает. Она возникает тогда, когда культура начинает решительно влиять на систему удовольствий, когда оказывается, что то, что люди думают, говорят и делают, способно настолько сильно изменить их отношение к миру, что события, вызывающие ранее удовольствие, вызывают теперь неудовольствие, и наоборот. Правда, удовольствия низшего уровня (от непосредственного удовлетворения физических потребностей) практически не меняются с культурой, но удовольствия высшего уровня (например, упоение своим охотничьим искусством, выносливость и т. п.) оказываются способными перевесить неудовольствия низшего уровня. Таким образом, критерий удовольствия сам оказывается подверженным управлению. Происходит метасистемный переход — возникают социальная шкала ценностей и система норм поведения.

Но это еще только введение, пролог к проблеме Высшего Блага.
В первобытном обществе нормы поведения можно сравнить с инстинктами животных; в общественном сверхмозге они и представляют собой точный аналог инстинктов животного индивидуума, заложенных в его мозге. Управление ассоциациями (мышление) разрушает инстинкты или, лучше сказать, понижает их в должности и заменяет их социальными нормами поведения. В первобытном обществе они — такой же абсолют, как для животного — инстинкты. Они хотя и меняются в процессе развития общества, но неосознанно, как и инстинкты в процессе эволюции вида. Каждым индивидуумом они воспринимаются как нечто данное и несомненное. Но вот происходит еще один метасистемный переход — к практическому мышлению — и тогда-то проблема Высшего Блага встает во весь рост.

Теперь люди не только воздействуют своей языковой деятельностью на свои собственные критерии удовольствия, но и осознают это воздействие. Простое и ясное «Я так хочу!» теряет свою первичность, свою данность. Когда человек сознает, что то, чего он хочет, есть результат его воспитания, воздействия со стороны других людей, а теперь зависит и от него самого, может быть изменено путем размышления и самовоспитания, он не может не задавать себе вопроса: а чего же он должен хотеть? Он обнаруживает в своем сознании пустоту, которую надо чем-то заполнить. Существует ли абсолютное Высшее Благо, к которому надо стремиться? — спрашивает он себя. Как жить? Каков смысл жизни?

Но однозначных ответов на эти вопросы он получить не может. Цель можно вывести только из цели. И если человек волен в своих желаниях, то он волен и в желаниях желаний. Круг сомнений и вопросов замыкается, и опереться больше не на что. Система поведения повисает в воздухе. Наивные первобытные верования и традиционные нормы поведения рушатся. Наступает эпоха религиозных и этических учений.

Этих учений много, и во многом они различны, но в то же время, как оказывается, есть у них и много общего — во всяком случае, если говорить об учениях, получивших широкое распространение. Теперь наша задача — уяснить, приводит ли научное мировоззрение к какому-либо определенному этическому учению и если да, то к какому именно.Заодно мы обсудим вопрос о природе общего знаменателя различных этических учений.


Продолжение мозга


Допустим, что в пещеру входят три врага, а выходят два. Тут первобытный человек и без помощи пальцев сообразит, что один враг остался в пещере. Это работает модель, которая есть у него в мозгу. А если входят двадцать пять, а выходят двадцать четыре или двадцать три? Здесь человеческий мозг окажется бессилен: он не содержит нужной модели, нужных понятий. Мы мгновенно и безошибочно различаем множества из одного, двух, трех, четырех предметов и можем отчетливо представить их в своем воображении. Эти понятия даны нам от природы, они распознаются нейронной сетью мозга, подобно понятиям пятна, линии, соприкасания и т. п. С понятиями, которые выражаются числами от пяти до восьми, дело обстоит хуже: здесь многое зависит от индивидуальных особенностей и тренировки. Что же касается понятий «девять», «десять» и т. д., то, за редчайшими исключениями, которые рассматриваются как отклонения от нормы, все они сливаются в одно понятие «много». И тогда человек создает язык, материальный носитель которого (например, пальцы) служит фиксатором новых понятий, выполняя функции тех классификаторов, для которых не нашлось места в мозгу. Если не хватит пальцев, пойдут в ход камешки, палочки, зарубки, а в более развитых языках — цифры и наборы цифр. Какой используется язык — неважно, важно лишь умение кодировать. Процесс счета служит для распознавания новых понятий, выполняя функции нервной сети, работа которой приводит в возбужденное состояние тот или иной классификатор. В результате счета объекту R, например отряду врагов, сопоставляется объект L, например ряд зарубок или цифр. Наконец, правила действий над объектами языка и связи между ними (например, типа 6 + 3 = 9 и т. п.) соответствуют ассоциациям между понятиями в мозгу. Это завершает аналогию между моделями, реализуемыми с помощью языка, и моделями, которые создаются нейронными сетями мозга.

Если орудие — продолжение руки человека, то язык — продолжение его мозга. Он служит для той же цели, для которой служит мозг: увеличению жизнеспособности вида путем создания модели окружающей среды.
Он продолжает дело мозга с помощью материала, лежащего за пределами физического тела человека, основываясь на моделях (понятиях и ассоциациях) доязыкового периода, реализуемых нервными сетями. Человек как бы перешагнул через границу своего мозга. Возможности такого перехода (а именно установления связи между внутренним и внешним материалом) открылись благодаря способности управлять ассоциированном, выразившейся в языкотворчестве.

Две функции языка: коммуникативная и моделирующая — неразрывно связаны друг с другом. Счет на пальцах мы привели в качестве примера модели, которая возникает только благодаря языку и которая не может существовать без языка. При коммуникативном использовании языка он выполняет более скромную задачу: фиксирует модель, которая уже существует в чьем-то мозгу. Такие фразы, как «идет дождь», «в соседнем лесу волки» или более отвлеченные: «гадюка ядовита», «огонь гасит воду», суть модели действительности. Когда один человек сообщает это другому, ассоциации, которые раньше были только в голове первого, утверждаются в голове второго.

Благодаря наличию языка человеческое общество коренным образом отличается от сообщества животных. В животном мире члены сообщества контактируют лишь на уровне функций, связанных с питанием и размножением. Члены человеческого общества контактируют не только на этом уровне, но и на самом высоком уровне их индивидуальной организации — на уровне моделирования внешнего мира с помощью ассоциации представлений. Люди, так сказать, контактируют мозгами. Язык — это не только продолжение каждого индивидуального мозга, но и общее, единое продолжение мозгов всех членов общества. Это коллективная модель действительности, над совершенствованием которой трудятся все члены общества и которая хранит опыт предыдущих поколений.


Промышленные революции


Следующий качественный скачок в системе производства — использование новых источников энергии, кроме мускульной энергии человека и животных. Это, конечно, тоже метасистемный переход, ибо возникает новый уровень системы — уровень двигателей, управляющий перемещением рабочих частей машины. Происходит первая промышленная революция (XVIII в. н. э.), радикально меняющая весь облик производства. Лейтмотивом технического прогресса становится совершенствование двигателей. Сначала это паровая машина, затем двигатель внутреннего сгорания, затем электромотор. Вслед за веком материала наступает век энергии. Наконец, наше время является свидетелем еще одного метасистемного перехода в структуре производства. Возникает новый уровень — уровень управления двигателями. Начинается вторая промышленная революция, которая, очевидно, в еще большей степени, чем первая, повлияет на общий облик системы производства. Век энергии сменяется веком информации. Автоматизация производственных процессов, внедрение в народное хозяйство вычислительных машин приводят к еще более быстрому, чем прежде, росту производительности труда и придают системе производства характер автономной самоуправляющейся системы.



Простой рефлекс (раздражимость)


Простейший вариант нервной сети — это вообще ее отсутствие. В этом случае рецепторы непосредственно связаны с эффекторами и возбуждение с одного или нескольких рецепторов передается на один или несколько эффекторов. Такую прямую связь между возбуждением рецептора и эффектора мы назовем простым рефлексом.

Этот этап — третий по нашей сквозной нумерации этапов эволюции — является пограничным между химической и кибернетической эрами. Тип кишечнополостных представляет животных, застывших на уровне простого рефлекса. Возьмем, например, гидру, которую изучают в школе как типичного представителя кишечнополостных. Тело гидры (рис. 1.8) имеет вид удлиненного мешочка. Его внутренность — кишечная полость — сообщается с внешней средой через ротовое отверстие, окруженное несколькими щупальцами. Стенки мешочка состоят из двух слоев клеток: внутреннего (энтодерма) и внешнего (эктодерма). И в эктодерме, и в энтодерме много мышечных клеток, содержащих волоконца, которые могут сокращаться, приводя тело гидры в движение. Кроме того, в эктодерме есть и нервные клетки, причем клетки, расположенные ближе всего к поверхности, — это рецепторы, а клетки, заложенные глубже, среди мышц, — эффекторы. Если к гидре прикоснуться иглой, она сжимается в комочек. Это простой рефлекс, вызванный передачей возбуждения от рецепторов к эффекторам.

Рис. 1.8. Строение гидры

Но гидра способна и к гораздо более сложному поведению. Захватив добычу, она подтягивает ее щупальцами к ротовому отверстию и заглатывает. Такое поведение тоже можно объяснить совокупным действием простых рефлексов, связывающих эффекторы и рецепторы локально — в пределах большого участка тела. Например, следующая модель щупальца объясняет его способность обвиваться вокруг падающих предметов (рис. 1.9). Представим себе некоторое количество звеньев, соединенных между собой шарнирами (для простоты рассматриваем плоскую картину). Точки A и B, A' и B', B и C, В' и C' и т. д. соединены между собой тяжами, которые могут сокращаться (мышцы). Все эти точки являются чувствительными, возбуждаясь от прикосновения к предмету (рецепторы). Возбуждение каждой точки приводит к сокращению двух соседних с нею тяжей (рефлекс).

Рис. 1.9. Модель щупальца



Путь к открытию


Ферма был только математиком. Декарт был прежде всего философом. Его размышления выходили далеко за пределы математики и имели дело с проблемами сущности бытия и познания. Декарт — основоположник философии рационализма, утверждающей неограниченную способность человека познавать мир, исходя из некоторого числа интуитивно ясных истин и продвигаясь, шаг за шагом вперед с помощью определенных правил или методов. Эти два слова — ключевые для всей философии Декарта. «Правила для руководства ума» — так называется его первое философское сочинение, «Рассуждение о методе» — второе. «Рассуждение о методе» было издано в 1637 г. в одном переплете с тремя физико-математическими трактатами: «Диоптрика», «Метеоры» и «Геометрия» и предшествовало им как изложение философских принципов, лежащих в основе следующих частей. Декарт выдвигает в этом сочинении следующие четыре принципа исследования:

Не признавать истинным ничего, кроме того, что с очевидностью познается мною таковым, т. е. тщательно избегать поспешности и предубеждений и принимать в свои суждения только то, что представляется моему уму так ясно и отчетливо, что ни в коем случае не возбуждает во мне сомнения. Разделять каждое из рассматриваемых мною затруднений на столько частей, на сколько возможно и сколько требуется для лучшего их разрешения. Мыслить по порядку, начиная с предметов наиболее простых и легко познаваемых, и восходить мало-помалу, как по ступеням, до познания наиболее сложных, допуская существование порядка даже среди тех, которые не следуют естественно друг за другом. Составлять повсюду настолько полные перечни и такие общие обзоры, чтобы быть уверенным, что ничего не пропущено.

Руководствуясь этими принципами, Декарт и приходит к своим математическим идеям. Вот как он сам описывает этот путь в «Рассуждении о методе»:

Мне не стоило большого труда отыскание того, с чего следует начинать, так как я уже знал, что начинать надо с самого простого и доступного пониманию; учитывая, что среди всех, кто ранее исследовал истину в науках, только математики смогли найти некоторые доказательства, т.
е. представить доводы несомненные и очевидные, я уже не сомневался, что начинать надо именно с тех, которые исследовали они... Но я не имел намерения изучать на этом основании все отдельные науки, обычно именуемые математикой. Видя, что хотя их предметы различны, но все же они сходны между собой в том, что рассматривают не что иное, как различные встречающиеся в предметах отношения, я подумал, что мне следует лучше исследовать эти отношения вообще, мысля их не только в тех предметах, которые облегчали бы мне их познание, и никоим образом не связывая с этими предметами, чтобы тем лучше применить их потом ко всем другим, к которым они подойдут. Затем, приняв во внимание, что для изучения этих отношений мне придется рассматривать каждое из них в отдельности и лишь иногда запоминать или истолковывать их по несколько вместе, я подумал, что для лучшего рассмотрения их в отдельности я должен представить их себе в виде линий, потому что я не находил ничего более простого, что я мог бы представить себе более отчетливо в своем воображении и ощущении. Но для того, чтобы лучше удержать их в памяти или сосредоточить внимание сразу на нескольких, надо выразить их какими-то возможно более краткими знаками. Благодаря такому способу, я мог заимствовать все лучшее в геометрическом анализе и в алгебре и исправить все недостатки одного при помощи другой.

Из этого чрезвычайно интересного свидетельства видно, что Декарт отчетливо осознает семантическую новизну своего языка, основанного на абстрактном понятии отношения и применимого ко всем явлениям действительности. Линии служат лишь для иллюстрации понятия отношения подобно тому, как набор палочек служит для иллюстрации понятия числа. В математических работах то, что обозначается буквами, Декарт и последующие математики называют по традиции величинами, но по смыслу это не пространственные геометрические величины греков, а их отношения. Понятие величины у Декарта так же абстрактно, как понятие числа. Но оно, конечно, никак не сводится к понятию числа в точном смысле слова, т.


е. рационального числа. В «Геометрии», поясняя свои обозначения, Декарт указывает, что они подобны (а не тождественны) обозначениям арифметической алгебры.

Подобно тому, как вся арифметика состоит только из четырех–пяти действий, а именно: сложения, вычитания, умножения, деления и извлечения корня... так и в геометрии для нахождения искомых отрезков надо только прибавлять или отнимать другие отрезки; или, имея отрезок, который я для более наглядного сопоставления с числами буду называть единицей и который вообще можно выбирать произвольно и, имея, кроме него, два других отрезка, требуется найти четвертый, который так относится к одному из этих двух, как другой к единице, — это равносильно умножению; или же требуется найти четвертый отрезок, который так относится к одному из двух данных, как единица к другому, — это равносильно делению; или, наконец, требуется найти одно, два или несколько средних пропорциональных между единицей и другим отрезком — это равносильно извлечению корня — квадратного, кубического и т. д. И я нисколько не колеблюсь ввести эти арифметические термины в геометрию, чтобы сделать мое изложение более понятным.

Семантика алгебраического языка Декарта много сложнее семантики арифметического и геометрического языков, опирающихся на наглядные образцы. Использование такого языка изменяет взгляд на отношение между языком и действительностью. Обнаруживается, что буквы математического языка могут обозначать не только числа и фигуры, но и нечто гораздо более абстрактное (точнее, конструктное). Отсюда берет начало изобретение новых математических языков и диалектов, введение новых конструктов. Прецедент был создан Декартом. Фактически Декарт заложил основу описания явлений действительности с помощью формализованных символьных языков.

Непосредственное значение реформы Декарта заключалось в том, что она развязала руки математикам для создания в абстрактной символьной форме исчисления бесконечно малых, основные идеи которого в геометрической форме были известны еще древним.


Если к дате выхода в свет «Геометрии» мы прибавим полвека, то очутимся в эпохе Лейбница и Ньютона, а еще через полвека — в эпохе Эйлера.

История науки показывает, что наибольшая слава достается обычно не тем, кто закладывает основы и, конечно, не тем, кто занимается мелкими заключительными доделками, а тем, кто в новом направлении мысли первым получает крупные результаты, поражающие воображение современников или ближайших потомков. Такую роль в европейской физико-математической науке сыграл Ньютон. Между тем известно высказывание Ньютона:

Если я видел дальше, чем Декарт, то потому, что я стоял на плечах Гигантов3.

Это, конечно, свидетельствует о скромности гениального ученого, но является также признанием долга перед первопроходцами со стороны «первополучателей». Яблоко, прославившее Ньютона, выросло на дереве, которое посадил Декарт.

1 Т. е. со сторонами, равными неравным частям.

2 Пробуждающаяся наука. Гл. 8.

3 If I have seen farther than Descartes, it is by standing on shoulders of giants.


Расхождение траекторий


И все же человек чрезвычайно мал по сравнению не только с Вселенной, но и с человечеством в целом, что снова склоняет нас к мысли о незначительности личного волевого акта, и закон больших чисел, казалось бы, должен укрепить нас в этой мысли. Надо заметить, что поверхностно понятые и неправильно приложенные научные истины очень часто способствуют принятию ложных концепций. Так обстоит дело и в данном случае. Опираясь на закон больших чисел, рассуждают следующим образом. На Земле живет три миллиарда человек (вариант: в нашей стране двести пятьдесят миллионов). Судьба человечества есть результат их совместных действий. Поскольку вклад каждого человека в эту сумму равен одной трехмиллиардной, ни один человек не может надеяться существенно повлиять на ход истории — разве что случайно. Играют роль лишь общие факторы, влияющие на поведение многих людей одновременно.

В действительности это рассуждение содержит грубую ошибку, состоящую в том, что закон больших чисел применим лишь к совокупности независимых подсистем. К человечеству его можно было бы применить в том случае, если бы все три миллиарда людей действовали абсолютно независимо и вообще не знали бы ничего друг о друге. Но это далеко не так. Человечество — большая и сильно связанная система; поступки одних людей самым серьезным образом влияют на поступки других. Такие системы обладают, вообще говоря, свойством расхождения траекторий, т. е. небольшие вариации в начальном состоянии системы становятся со временем все больше и больше. Ситуации, в которых закон расхождения траекторий проявляется с несомненной очевидностью, мы называем кризисными. В кризисной ситуации огромные перемены в состоянии системы зависят от ничтожных (в масштабе системы) причин. В такой ситуации действия одного человека, быть может даже одно слово, сказанное им, могут иметь решающее значение. Кризисные ситуации мы склонны рассматривать как редкие, даже исключительные, но мы знаем множество постоянно действующих факторов, приводящих к многократному усилению влияния одного человека.
Это так называемые триггерные механизмы, т. е. механизмы со спусковым крючком. Требуется совершенно незначительное усилие, чтобы нажать на спусковой крючок или кнопку управления, а последствия, вызванные этим действием, могут быть огромны. Вряд ли есть необходимость говорить, как много таких механизмов в человеческом обществе.

И все же идея о маленьком человеке — этот фиговый листок, которым мы прикрываем на людях срам своей трусости, — не сдается без боя. Большинство людей, — говорит «маленький человек», — не участвуют в кризисных ситуациях и не имеют доступа к спусковым крючкам.

Наверное, многие помнят английский стишок, переведенный Маршаком, который заканчивается словами:

Враг вступает в город, пленных не щадя,
Потому что в кузнице не было гвоздя!

В стишке описан триггерный механизм, который от растяпы-кузнеца, у которого не было гвоздя, ведет к поражению армии. Мы относимся к этой истории с большой дозой юмора, не желая принимать ее совсем всерьез. Почему? Не потому ли, что таких многоступенчатых зависимостей не бывает? Отнюдь нет. Вся наша жизнь состоит из них. То же говорит математическое исследование больших связанных систем: траектории расходятся. Первоначально незначительное отклонение — отсутствие в кузнице гвоздя — шаг за шагом увеличивается: подкова пропала, лошадь захромала, командир убит, конница разбита, армия бежит. А скептически мы относимся к подобным длинным цепочкам потому, что в обыденной жизни нам почти никогда не удается с достоверностью проследить их от начала до конца. Во-первых, каждая связь между звеньями цепочки имеет вероятностный характер: захромавшая лошадь вовсе не обязательно губит командира. Во-вторых, прослеживание связи событий постоянно ставит вопросы типа: «А что было бы, если бы не...?» Трудно найти двух людей, дающих одинаковые ответы на серию таких вопросов, а вернуть время назад и посмотреть, невозможно. Наконец, в-третьих, мы практически никогда не обладаем необходимой информацией.

Но тот факт, что мы не можем проследить этих цепочек в обратном направлении, не должен затемнять нам сознание их существования, когда мы думаем о последствиях наших поступков.Кризисные ситуации редки не потому, что малые причины редко вызывают большие последствия — это происходит постоянно, но потому, что это превращение редко предстает перед нами со всей очевидностью. Мы никогда не можем в точности предвидеть результаты наших поступков. Единственное, что нам доступно, — это установить общие принципы, руководствуясь которыми мы увеличиваем вероятность Добра, т. е. вероятность тех последствий, которые считаем желательными. Мы должны действовать в соответствии с этими принципами, рассматривая каждую ситуацию как кризисную, ибо важность каждого акта нашей воли может оказаться огромной. Действуя так всегда, мы, несомненно, внесем свой положительный вклад в дело Добра — вот здесь закон больших чисел действует в полную силу.


Распознаватели и классификаторы


Нервную сеть, решающую задачу распознавания, мы назовем распознавателем, а состояние эффектора на его выходе будем называть просто состоянием распознавателя. Отправляясь от понятия распознавателя, мы введем несколько более общее понятие классификатора. Распознаватель делит множество всех мыслимых ситуаций на два непересекающихся подмножества: A и не A. Можно представить себе деление полного множества ситуаций на произвольное число n пересекающихся подмножеств. Такие подмножества называют обычно классами. Теперь вообразим некую подсистему C, имеющую n возможных состояний и связанную нервной сетью с рецепторами таким образом, что, когда ситуация принадлежит к i-му классу (i-му понятию), подсистема C приходит в i-е состояние. Такую подсистему вместе с нервной сетью мы будем называть классификатором по множеству n понятий (классов), а, говоря о состоянии классификатора, подразумевать состояние подсистемы C (выходной подсистемы). Распознаватель — это, очевидно, классификатор с числом состояний n = 2.

В системе, организованной по двоичному принципу подобно нервной системе, подсистема C с n состояниями будет, конечно, состоять из какого-то числа элементарных подсистем с двумя состояниями, которые можно рассматривать как выходные подсистемы (эффекторы) распознавателей. Состояние классификатора, следовательно, будет описываться указанием состояний ряда распознавателей. Однако эти распознаватели могут быть тесно связаны между собой как по структуре сети, так и по выполняемой функции в нервной системе, и в этом случае их следует рассматривать в совокупности как один классификатор.

Если не накладывать никаких ограничений на число состояний, то понятие «классификатор» фактически теряет смысл. Действительно, всякая нервная сеть сопоставляет каждому входному состоянию одно определенное выходное состояние; следовательно, каждому выходному состоянию соответствует множество входных состояний, и эти множества не пересекаются. Таким образом, всякое кибернетическое устройство с входом и выходом можно формально рассматривать как классификатор. Придавая этому понятию более узкий смысл, мы будем считать, что число выходных состояний классификатора гораздо меньше, чем число входных состояний, так что классификатор действительно «классифицирует» входные состояния (ситуации) по относительно небольшому числу больших классов.



Рефлекс как функциональное понятие


Понятия рефлекса и ассоциации — не структурные, а функциональные понятия. Связь между стимулом S и реакцией R в рефлексе (рис. 3.2) — не передача информации от одной подсистемы к другой, а переход из одного обобщенного состояния в другое. Это разграничение необходимо, чтобы не смешивать рефлекс как определенную функциональную схему, описывающую поведение, с воплощением этой схемы, т. е. с кибернетическим устройством, обнаруживающим эту схему поведения.

Рис. 3.2. Функциональная схема безусловного рефлекса

Путаница легко может возникнуть, ибо простейшее воплощение рефлекторного поведения имеет структурную схему, совпадающую по внешности со схемой на рис. 3.2, только под S и R надо в ней понимать материальные подсистемы, фиксирующие стимул и реакцию. Такое совпадение не совсем случайно. Как мы уже говорили при определении функциональной схемы, разбиение множества всех состояний системы на подмножества, приписываемые вершинам графа, тесно связано с разбиением системы на подсистемы. В частности, с каждой подсистемой, которая может находиться в двух состояниях («да» и «нет»), можно связать множество всех состояний системы в целом, при которых эта система находится в определенном состоянии, скажем «да». Проще говоря, при определении обобщенного состояния мы учитываем только состояние данной подсистемы, а что делается с остальными подсистемами, нам безразлично. Допустим, что буквы S и R обозначают именно такие подсистемы, т. е. подсистема S есть распознаватель стимула (множества ситуаций) S, а подсистема R - эффектор, вызывающий реакцию R. Тогда утверждение, что «да» в подсистеме S передается по каналу связи (стрелка) в подсистему R, приводя ее также в состояние «да», совпадает с утверждением, что обобщенное состояние S переходит (стрелка) в состояние R. Поэтому структурная и функциональная схемы оказываются очень похожими. Правда, на структурной схеме никак не отражено, что «да» вызывает «да», а не «нет», в то время как в этом вся суть рефлекса. Рефлекс, как уже говорилось, понятие функциональное.



Решение уравнений


С развитием техники счета и вообще с развитием цивилизации стали появляться и решаться все более сложные уравнения. Древние не знали, конечно, современного алгебраического языка, они выражали уравнения на обычном разговорном языке подобно тому, как это делается в наших школьных учебниках арифметики. Но это не меняет сущности задач, которые они решали (и так называемых арифметических школьных задач), как задач на решение уравнений.

Величину, подлежащую определению, египтяне называли «аха», что переводят как «некоторое количество» или «куча». Вот пример формулировки задачи из египетского папируса: «количество и его четвертая часть дают вместе 15». Это задача «на части» по современной арифметической терминологии, а на алгебраическом языке она соответствует уравнению

x + 1/4 x = 15.

Приведем пример более сложной задачи египетских времен.

Квадрат и другой квадрат, сторона которого есть 1/2 + 1/4 стороны первого квадрата, имеют вместе площадь 100. Вычисли мне это.

Решение в современных обозначениях:

x2 + (3/4 x)2 = 100, (1 + 9/16) x2 = 100,

5/4 x = 10, x = 8, 3/4 x = 6,

Описание решения в папирусе:

Возьми квадрат со стороной 1 и возьми 1/2 + 1/4 от 1, т. е. 1/2 + 1/4 в качестве стороны второй площади. Помножь 1/2 + 1/4 на самое себя, это дает 1/2 + 1/16. Поскольку сторона первой площади взята за 1, а второй за 1/2 + 1/4, то сложи обе площади вместе; это дает 1 + 1/2 + 1/16. Возьми корень отсюда: это будет 1 + 1/4. Возьми корень из данных 100: это будет 10. Сколько раз входит 1 + 1/4 в 10? Это входит 8 раз.

Дальше текст не сохранился, но конец очевиден: 8 × 1 = 8 — сторона первого квадрата, 8 × (1/2 + 1/4) = 6 — второго.

Египтяне умели решать только линейные и простейшие квадратные уравнения с одним неизвестным. Вавилоняне продвинулись гораздо дальше. Вот пример задачи из вавилонских текстов.

Площади двух моих квадратов я сложил: 25 25/60. Сторона второго квадрата равна 2/3 стороны первого и еще 5.

Далее следует совершенно правильное ее решение. Эта задача эквивалентна системе уравнений с двумя неизвестными:

x2 + y2 = 25 25/60, y = 2/3 x + 5.

Вавилоняне умели решать полное квадратное уравнение

x2 ± ax = b,

кубические уравнения

x3 = a и x2 (x + 1) = a,

системы уравнений, подобные приведенной выше, а также вида

x2 ± y = a, xy = b.

Кроме того, они пользовались формулами

(a + b)2 = a + 2ab + b2 и (a + b)(a - b) = a2 - b2,

умели суммировать арифметические прогрессии, знали суммы некоторых числовых рядов и числа, которые впоследствии подучили название пифагоровых (такие целые числа x, y, z, что х2 + у2 = z2).



Роль общих принципов


Бэкон выдвинул программу постепенного введения теоретических положений («причин и аксиом») все большей и большей общности, начиная с эмпирических единичных данных. Этот процесс он назвал индукцией (т. е. введением) в отличие от дедукции (выведения) теоретических положений меньшей общности из положений большей общности (принципов). Бэкон был большим противником общих принципов, он говорил, что разум нуждается не в крыльях, которые поднимали бы его ввысь, а в свинце, который притягивал бы его к земле. В период «первоначального накопления» опытных фактов и простейших эмпирических закономерностей, а также в качестве противовеса средневековой схоластике эта концепция еще имела некоторое оправдание, но в дальнейшем оказалось, что крылья разуму все-таки нужнее свинца. Во всяком случае, так обстоит дело в теоретической физике. В подтверждение предоставим слово такому несомненному авторитету в этой области, как Альберт Эйнштейн. В статье «Принципы теоретической физики»3 он пишет:

Для применения своего метода теоретик в качестве фундамента нуждается в некоторых общих предположениях, так называемых принципах, исходя из которых он может вывести следствия. Его деятельность, таким образом, разбивается на два этапа. Во-первых, ему необходимо отыскать принципы, во-вторых, развивать вытекающие из этих принципов следствия. Для выполнения второй задачи он основательно вооружен еще со школы. Следовательно, если для некоторой области, т. е. совокупности взаимозависимостей, первая задача решена, то следствия не заставят себя ждать. Совершенно иного рода первая из названных задач, т. е. установление принципов, могущих служить основой для дедукции. Здесь не существует метода, который можно было бы выучить и систематически применять для достижения цели. Исследователь должен, скорее, выведать у природы четко формулируемые общие принципы, отражающие определенные общие черты множества экспериментально установленных фактов.

В другой статье («Физика и реальность») Эйнштейн высказывается весьма категорически:


Физика представляет собой развивающуюся логическую систему мышления, основы которой можно получить не выделением их какими-либо индуктивными методами из пережитых опытов, а лишь свободным вымыслом.

Слова о «свободном вымысле» означают, конечно, не то, что общие принципы совершенно не зависят от опыта, а то, что они не определяются опытом однозначно. Пример, который Эйнштейн часто приводит, таков. Небесная механика Ньютона и общая теория относительности Эйнштейна построены на одних и тех же опытных фактах. Однако они исходят из совершенно различных, в некотором смысле даже диаметрально противоположных общих принципов, что проявляется и в различном математическом аппарате.

Пока «этажность» здания теоретической физики была невелика, и следствия из общих принципов выводились легко и однозначно, люди не осознавали, что при установлении принципов они имеют определенную свободу. В методе проб и ошибок расстояние между пробой и ошибкой (или успехом) было так невелико, что они не замечали, что пользуются методом проб и ошибок, а полагали, что непосредственно выводят (хотя это и называлось не дедукцией, а индукцией) принципы из опыта. Эйнштейн пишет:

Ньютон, творец первой обширной плодотворной системы теоретической физики, еще думал, что основные понятия и принципы его теории вытекают из опыта. Очевидно, именно в таком смысле нужно понимать его изречение «hypotheses non fingo» (гипотез не сочиняю).

Но со временем теоретическая физика превратилась в многоэтажную конструкцию, и вывод следствий из общих принципов стал делом сложным и не всегда однозначным, ибо часто оказывалось необходимым делать в процессе дедукции дополнительные предположения, чаще всего «непринципиальные» упрощения, без которых невозможно было бы довести расчет до числа. Тогда стало ясно, что между общими принципами теории и фактами, допускающими непосредственную проверку на опыте, существует глубокое различие: первые суть свободные конструкции человеческого разума, вторые — исходный материал, который разум получает от природы.


Правда, переоценивать глубину этого различия все- таки не следует. Если отвлечься от человеческих дел и стремлений, то окажется, что различие между теориями и фактами исчезает, — и те и другие являются некоторыми отражениями или моделями действительности вне человека. Различие заключается в уровне, на котором происходит овеществление модели. Факты, если они полностью «деидеологизированы», определяются воздействием внешнего мира на нервную систему человека, которую мы вынуждены рассматривать (пока) как не допускающую переделки, поэтому мы и относимся к фактам как к первичной реальности. Теории — это модели, овеществленные в языковых объектах, которые целиком в нашей власти, поэтому мы можем отбросить одну теорию и заменить ее другой с такой же легкостью, как заменяем устаревший инструмент на более совершенный.

Возрастание абстрактности (конструктности) общих принципов физических теорий, их отдаление от непосредственных опытных фактов приводит к тому, что в методе проб и ошибок все труднее становится найти пробу, имеющую шансы на успех. Разум начинает просто нуждаться в крыльях для воспарения, о чем и говорит Эйнштейн. С другой стороны, увеличение дистанции от общих принципов до проверяемых следствий делает общие принципы в известных пределах неуязвимыми для опыта, на что также часто указывали классики новейшей физики. Обнаружив расхождение между следствиями теории и экспериментом, исследователь оказывается перед альтернативой: искать причины расхождения в общих принципах теории или же где-то на пути от принципов к конкретным следствиям. Вследствие дороговизны общих принципов и больших затрат, необходимых для перестройки теории в целом, сначала всегда пробуют второй путь. Если удается достаточно изящным способом модифицировать вывод следствий из общих принципов так, что они согласуются с экспериментом, то все успокаиваются и проблема считается решенной. Но иногда модификация выглядит явно, как грубая заплата, а порой заплаты наслаиваются друг на друга и теория начинает трещать по всем швам; тем не менее, ее выводы согласуются с данными опыта и она продолжает сохранять свою предсказательную силу.Тогда возникают вопросы: как следует относиться к общим принципам такой теории? Надо ли стремиться заменить их какими-то другими принципами? При какой степени «залатанности» имеет смысл отбрасывать старую теорию?


Рост науки


Наука растет и растет стремительно — по экспоненциальному закону, т. е. таким образом, что за каждые сколько-то лет ее количественные характеристики возрастают во столько-то раз. Общее число статей в научных журналах всего мира удваивается за 12–15 лет1. Число научных работников удваивается: в Западной Европе — за 15 лет, в США — за 10 лет, в СССР — за 7 лет. При таком бешеном темпе роста современное поколение ученых составляет 9/10 суммарной численности всех ученых, когда-либо живших на Земле.

Вместе с наукой экспоненциально растут и другие количественные характеристики, относящиеся к человечеству: общая численность людей и общий объем производства материальных ценностей. Но по темпам роста наука значительно обгоняет их. Темпы роста населения, производства и науки находятся, грубо говоря, в пропорции 1:2:4. Это — здоровая пропорция, отражающая такую эволюцию организма, когда масса мышц возрастает быстрее, чем общая масса тела, а масса мозга возрастает быстрее, чем масса мышц. Правда, с территориальным распределением прироста дело обстоит неблагополучно: высокий прирост населения приходится в основном на страны с низким приростом производства и практически нулевым вкладом в мировую науку. Однако с этой болезнью роста человечество, будем надеяться, сумеет справиться. В том, что это болезнь роста, вряд ли можно усомниться: ведь и быстрый рост населения в слаборазвитых странах обязан высокому уровню мировой науки (медицинское обслуживание, социальные сдвиги). Человечество уже сейчас представляет собой весьма интегрированную систему, и его общий взлет, передаваемый пропорцией 1:2:4, — результат развития науки — явление совсем недавнее. Если экстраполировать в прошлое современный прирост населения (порядка 2% в год), то окажется, что всего около тысячи лет назад на Земле должно было жить два человека!

Годы
1700 1800 1900 2000

Рис. 14.1. Рост обшей массы научных журналов

Доля людей, занятых непосредственно в сфере науки, пока еще невелика даже в высокоразвитых странах — от 0,5 до 1%.
Сейчас она быстро растет, однако рано или поздно рост ее, очевидно, замедлится, она выйдет на постоянный уровень, величину которого трудно предсказать. Насколько можно судить по литературе, считается маловероятным, чтобы этот уровень превысил 25%. Ведь и мозг человека составляет по весу небольшую долю всего тела.

Абсолютное число людей, занимающихся научной деятельностью, будет, тем не менее, непрерывно возрастать, а вместе с ним будет непрерывно возрастать и количество производимой ими информации. Уже сейчас это количество огромно. Первые научные периодические издания начали выходить во второй половине XVII в. К началу 60-х годов нашего века их суммарное число составило 50 тыс. (рис. 14.1), продолжало выходить из них 30 тыс. изданий. Всего в них было опубликовано 6 млн. статей, и эта цифра увеличивалась на полмиллиона в год2. Общее число зарегистрированных патентов и авторских свидетельств превысило 13 млн.

Этот поток информации, требующий анализа, порождает серьезные трудности. Научная работа уже давно требует крайней степени специализации, однако, в последнее время все чаше возникает такое положение, когда ученый лишается возможности уследить за всеми новыми работами даже в своей узкой области. Перед ним встает дилемма: либо читать статьи, либо работать. Вдобавок вследствие технических трудностей распространения и переработки огромных количеств информации (можно это также назвать несовершенством системы информации в науке и технике) часто приходится затрачивать большие усилия на поиски нужной информации, и они не всегда приводят к успеху. В результате многие работы делаются повторно или не так, как их следовало бы делать. По оценке американских ученых от 10 до 20% научно-исследовательских и проектно-конструкторских работ можно было бы не проводить, если бы имелась информация об уже выполненных работах. Убытки от этого в США составили 1,25 млрд. долларов. Согласно Г.Н.Доброву, в 1946 г. 40% заявок на изобретения в области угольного комбайностроения отвергались как повторные.В 1961 г. эта цифра возросла до 85%.


Самопознание


У животных нет понятия о себе самом, это понятие не нужно для обработки информации, поступающей извне. Мозг животного можно сравнить с зеркалом, которое отражает окружающую действительность, но само ни в чем не отражается. В самом примитивном человеческом обществе каждому человеку присваивается имя, и каждый человек произносит свое имя и предложения, в которых его имя содержится. Таким образом, он сам — в виде предложений, содержащих его имя, — становится предметом своего внимания и изучения. Язык представляет собой как бы второе зеркало, в котором отражается весь мир, и в том числе каждый индивидуум, и в котором каждый индивидуум может увидеть (вернее, не может не увидеть!) самого себя. Так возникает понятие «Я». Если заключительный этап кибернетического периода можно назвать этапом познания, то эра разума — это эра самопознания. Система двух зеркал — мозга и языка создает возможность бесчисленного множества взаимных отражений без необходимости выходить из пространства между зеркалами. Это порождает неразрешимые загадки самопознания и в первую очередь загадку смерти.



Счет и измерение


Факты убедительно свидетельствуют о том, что счет возникает раньше, чем названия чисел. Иначе говоря, первоначально языковыми объектами для построения модели служат не слова, а выделенные однотипные предметы: пальцы, камешки, узелки, черточки. Это и естественно. При возникновении языка слова связываются только с теми понятиями, которые уже существуют, т. е. распознаются. Слова «один», «два» и, возможно, «три» появляются независимо от счета (если понимать под счетом процедуру, протяженную во времени и осознаваемую как таковая), ибо они опираются на соответствующие нейронные понятия. Словам для больших чисел взяться неоткуда. Чтобы передать численность какой-то группы предметов, человек пользуется стандартными предметами, устанавливая между ними — один за другим — взаимно однозначное соответствие. Это и есть счет. Когда счет становится распространенным и привычным делом, для наиболее часто встречающихся (т. е. небольших) групп стандартных предметов возникают и словесные обозначения. На некоторых числительных остались следы их происхождения. Так, русское слово «пять» подозрительно похоже на старославянское «пядь» — рука (пять пальцев).

Есть первобытные народы, у которых всего два или три числительных: один, два, три. Все остальное — много. Но это вовсе не исключает умения считать с помощью стандартных предметов и передавать о численности путем разбиения на двойки и тройки или путем таких, не редуцированных еще выражений, как «столько, сколько пальцев на двух руках, одной ноге и еще один». Просто потребность в счете еще не так велика, чтобы заводить специальные слова. Последовательность «один, два, три, много» отражает не неспособность к счету до четырех и дальше, как иногда думают, а различие, которое проводит человеческий мозг между первыми тремя числами и всеми остальными. Ибо совсем без напряжения и бессознательно мы распознаем только числа до трех. Для распознавания четверки надо уже специально сосредоточиться. Так что не только для дикарей, но и для нас все, что больше трех, много.


Чтобы передать большие числа, люди стали считать «большими единицами» — пятерками, десятками, двадцатками.

Во всех известных нам системах счета большие единицы кратны пяти, что свидетельствует о том, что первым счетным инструментом всегда становились пальцы. Из комбинации больших единиц возникли еще большие единицы. В древнеегипетских папирусах встречаются отдельные иероглифы, изображающие числа до десяти миллионов.

Начало измерения, как и счета, относится к глубокой древности: мы находим его уже у первобытных народов. Измерение предполагает умение считать и требует дополнительно введения единицы измерения — меры измерительной процедуры, состоящей в сравнении измеряемого с единицей. Древнейшие меры связаны с человеческим телом: шаг, локоть, фут (ступня).

С возникновением цивилизации потребность в счете и в умении выполнять арифметические действия резко увеличивается. При развитом общественном производстве регулирование отношений между людьми: обмен, раздел имущества, налогообложение — требует знания арифметики и элементов геометрии. И мы находим эти знания в древнейших из известных нам цивилизаций — вавилонской и египетской.


Синтаксис и семантика


В заключение нашего краткого очерка логики рассмотрим вопрос о связи языка логики и естественного языка. Попутно будут введены важные понятия синтаксис и семантика языка.

Вспомним фразу о рыжем псе, которую мы разложили в набор высказываний, выражаемых с помощью предикатов. Смысл, значение, этого набора совпадает со смыслом исходной фразы, а форма записи, структура текста, существенно отличается. В семиотике (наука, изучающая знаковые системы) совокупность правил построения элементов языка называют его синтаксисом, а связь между элементами языка и их значениями — семантикой. Следовательно, первое, что бросается в глаза при сравнении логического и естественного языков, это то, что язык логики имеет другой синтаксис. Этот синтаксис прост и единообразен. Он основан на стиле обозначений, сложившемся в математике, — конструирование более сложных элементов языка из более простых, изображается по аналогии с математической записью операций и функций. Синтаксис языка логики полностью формализован, т. е. существует набор четко сформулированных правил, с помощью которых можно построить любой языковый элемент. Далее, какой бы правильно построенный элемент языка (объект или высказывание) мы ни взяли, всегда можно восстановить путь, которым этот элемент был построен, его структуру. Этот процесс называется синтаксическим анализом элемента. Легко убедиться, что в языке логики синтаксический анализ чрезвычайно прост и однозначен.

Синтаксис (в смысле семиотики) естественного языка — это его грамматика, т. е. правила конструирования предложений из слов (синтаксис в узком, лингвистическом смысле слова) и правила конструирования слов из букв (морфология). В отличие от языка логики синтаксис естественного языка отнюдь не является полностью формализованным. Он включает в себя множество правил с великим множеством исключений. Это различие вполне понятно: язык логики создавался искусственно, а естественный язык — продукт долгого развития, которым никто не управлял сознательно, никто не пользовался заранее продуманным планом.
Грамматика естественного языка — это не конструирование, а исследование уже готовой системы, попытка вскрыть и по возможности сформулировать те правила, которыми говорящие на этом языке люди пользуются неосознанно.
Синтаксический анализ предложений естественного языка нередко требует обращения к семантике, ибо без учета смысла, значения предложения, он оказывается неоднозначным. Возьмем, например, такую фразу: «Вот списки студентов, которые сдали зачет по физике». Здесь определение «которые сдали зачет по физике» относится к студентам. Если для уточнения синтаксической структуры фразы использовать скобки подобно тому, как это делается при записи алгебраических или логических выражений, то скобки надо поставить так: «Вот списки (студентов, которые... и т. д.)». Теперь возьмем такое предложение: «Вот списки студентов, которые лежали в шкафу у декана». Формально структура этой фразы в точности такая же, как и предыдущей. На самом же деле здесь подразумевается другая расстановка скобок, а именно «Вот (списки студентов), которые... и т. д.». Мысленно расставляя скобки таким образом, мы опираемся исключительно на смысл фразы, ибо не допускаем, что студенты могли лежать в шкафу у декана.
Вообще оборот со словом «который» — весьма коварная вещь. Л.Успенский в книге «Слово о словах» рассказывает, что однажды он увидел такое объявление:
«Граждане, сдавайте утиль дворнику, который накопился!»
Неудивительно, что этот оборот не прижился в математической логике!

Системный аспект культуры


Продолжим наше шествие по этапам эволюции. Из области биологии мы перешли в область истории человечества. В главе 5 был дан набросок истории «материальной» культуры. Теперь предметом нашего анализа будет история развития языка и мышления — важнейшей составной части «духовной» культуры. Как мы уже отмечали, деление культуры на «материальную» и «духовную» весьма условно и, когда мы хотим подчеркнуть это, мы помещаем их в кавычки. Использование орудия и тем более создание нового орудия требуют работы воображения и сопровождаются эмоциями, что дает основания рассматривать эти явления как часть «духовной» культуры. В то же время процесс мышления проявляется как определенная языковая деятельность, направленная на вполне материальные предметы — языковые объекты. Язык и мышление, с одной стороны, и материальная культура, с другой стороны, связаны друг с другом теснейшим образом. Историк, поставивший себе задачу детально исследовать механизм развития культуры, не может рассматривать эти явления иначе, как в их взаимосвязи. Он должен также учесть другие стороны культуры и в первую очередь социальную структуру общества, а также влияние природных условий, исторических случайностей и прочих факторов. Но данное исследование не является историческим и наша задача проще: не вдаваясь в детали исторического развития, описать то, что произошло, с кибернетической, или, как еще говорят, с системной, точки зрения. Как и в вопросе о происхождении человека, нас не будут интересовать хитросплетения исторических обстоятельств, приведших к тому, что тот или иной шаг в развитии культуры был сделан в том или ином месте и в то или иное время. Подход наш остается весьма глобальным и общим. Нас интересует лишь один (но зато самый важный в механизме развития!) аспект культуры — ее структура как иерархии по управлению. Соответственно и развитие культуры мы будем рассматривать как усложнение этой иерархии путем последовательных метасистемных переходов. Мы покажем, что, как и в случае биологического развития, важнейшие этапы развития языка и мышления отделяются друг от друга именно метасистемными переходами.



Сложный рефлекс


Простая рефлекторная связь между возбудимой и мышечной клетками естественно возникает в процессе эволюции по методу проб и ошибок: если оказывается, что корреляция между возбуждением одной клетки и сокращением другой полезна для животного, то эта корреляция устанавливается и закрепляется. При механическом копировании связанных клеток в процессе роста и размножения природа получает систему параллельно действующих простых рефлексов, подобную щупальцу гидры. Но когда в ее (природы) распоряжении оказывается множество рецепторов и эффекторов, связанных попарно или локально, у нее «возникает искушение» усложнить систему связей путем введения промежуточных нейронов. Выгодность этого следует из того, что при наличии системы связей между всеми нейронами становятся возможными такие формы поведения, которые невозможны при ограничении парными или локальными связями. Последнее утверждение можно доказать простым подсчетом всевозможных способов преобразования ситуации в действие при том и другом способах связи. Пусть, например, у нас есть n попарно связанных рецепторов и эффекторов. Связь в каждой паре может быть либо положительная (возбуждение вызывает возбуждение, покой — покой), либо отрицательная (возбуждение вызывает покой, покой — возбуждение). Следовательно, всего возможно 2n вариантов связи, т. е. 2n вариантов поведения. Если же предположить, что система связей может быть произвольная, т. е. состояние возбуждения или покоя каждого эффектора может произвольным образом зависеть от состояния всех рецепторов, то подсчет всевозможных вариантов поведения приводит к числу 2(2n)n, неизмеримо большему, чем 2n. Совершенно такой же расчет приводит к заключению, что объединение любых подсистем, связывающих независимо друг от друга группы рецепторов и эффекторов в единую систему, всегда приводит к огромному возрастанию числа возможных вариантов поведения. Поэтому на протяжении всей истории жизни эволюция нервной системы проходит под знаком увеличения централизации.

Однако централизация централизации рознь.
Если связать все нейроны в один бессмысленно запутанный клубок, то, несмотря на крайнюю «централизованность» такой системы, она вряд ли будет иметь шансы выжить в борьбе за существование. Централизация ставит следующую проблему: как из всех мыслимых способов соединения многих рецепторов с многими эффекторами (с помощью промежуточных нейронов, если потребуется) выбрать такой способ, который будет каждой ситуации сопоставлять правильное, т. е. полезное для выживания и размножения, действие? Ведь подавляющее большинство способов соединения не обладает этим свойством.

Мы знаем, что каждый новый шаг на пути усложнения живых структур природа делает по методу проб и ошибок. Посмотрим, что дает непосредственное применение метода проб и ошибок к нашей проблеме. Рассмотрим для примера небольшую систему из ста рецепторов и ста эффекторов. Допустим, что в нашем распоряжении сколько угодно нейронов для создания промежуточной нервной сети и что мы умеем легко определять, дает ли данный способ соединения нейронов правильную реакцию на каждую ситуацию. Будем перебирать все мыслимые способы, пока не натолкнемся на нужный. При n = 100 число функционально различных нервных сетей между n рецепторами и n эффекторами есть

2(2n)n ? 10(1032).

Число это невообразимо велико. Перебор такого числа вариантов недоступен не только нам, но и нашей матушке-природе. Если бы каждый атом во всей видимой нами части Вселенной занимался просмотром вариантов и перебирал бы их со скоростью миллиард штук в секунду, то и за миллиард миллиардов лет (а наша Земля существует не более десяти миллиардов лет) не была бы просмотрена и миллиардная доля общего числа вариантов.

Между тем как-то ведь происходит формирование эффективно работающей нервной сети! Причем число рецепторов и эффекторов у высших животных исчисляется не сотнями и не тысячами, а миллионами.

Разгадка кроется в иерархическом строении нервной системы.

Здесь нам снова необходим экскурс в область общекибернетических понятий. Четвертый этап эволюции мы назовем этапом сложного рефлекса, но дать определение этому понятию сможем лишь после того, как познакомимся с некоторыми фактами об иерархически устроенных нервных сетях.

1 Мы следуем в основном докладу С.Э.Шноля «Сущность жизни. Инвариантность общего направления биологической эволюции» (Диалектика и современное естествознание: Матер. семинара. Дубна, 1967)


Смешное и прекрасное


Но качественные отличия все-таки интереснее. Мы уже установили, что наличие специального аппарата управления ассоциированием делает для человека обучение активным процессом, связанным с положительными и отрицательными эмоциями. Это истинно человеческие эмоции, недоступные существам, которые не обладают указанным аппаратом. Из того факта, что целью ассоциирования является построение модели (или моделей) внешней среды, можно сделать вывод, что новая эмоция будет иметь положительный знак в случае установления ассоциации, улучшающей мозговую деятельность мира. Эту эмоцию можно назвать удовольствием от новизны, употребляя термин «новизна» в том смысле, который мы придаем ему выше. Соответствующую отрицательную эмоцию называют скукой. Выше мы перечисляли критерии установления и закрепления ассоциаций и отделяли критерий новизны от критерия наличия эмоционального подкрепления. Мы имели в виду обычные эмоции, общие для человека и животного. Возведя удовольствие от новизны в ранг эмоции, мы можем объявить третий критерий частным случаем первого. Тогда мы можем сказать, что непроизвольное ассоциирование всегда связано с эмоциональным подкреплением, но человек по сравнению с животным обладает принципиально новым классом эмоций.

Да, именно классом. «Удовольствие от новизны» — очень общий термин, покрывающий не одну эмоцию, а целый класс их. Можно сразу указать два явно отличающихся представителя этого класса: чувство смешного и чувство прекрасного. Вряд ли кто-нибудь в настоящее время возьмется утверждать, что он до конца понимает природу этих эмоций и может дать им сколько-нибудь детальную кибернетическую интерпретацию. Однако несомненно, что они неотделимы от познания мира, от создания новых моделей.

Что вызывает у нас смех? Совершенно неожиданное, но в то же время законное и задним числом вполне понятное нарушение «нормального» хода событий. Неожиданная ассоциация, бессмысленная на первый взгляд, но отражающая какие-то глубинные связи между вещами. Все это, конечно, создает новую модель мира и доставляет удовольствие, пропорциональное ее новизне.
Конец новизны — это конец смешного. Когда нас пытаются смешить в соответствии с хорошо знакомой моделью, мы называем такой юмор плоским. Но это понятие чрезвычайно относительно. Кому незнакома ситуация, когда в ответ на рассказанный анекдот один слушатель разражается хохотом, а другой лишь кисло усмехается? Их различает, очевидно, отсутствие или наличие соответствующей модели. Очень важна для уяснения природы юмора и другая ситуация: когда один хохочет, а другой непонимающе хлопает глазами. «Не дошло!» — говорят в таких случаях. Шутка оказалась слишком тонкой для этого человека, она опирается на такие ассоциации, которых у него нет. Смешное всегда лежит на грани между тривиальным и непонятным. Эта грань у каждого своя, и она передвигается в процессе индивидуального развития. Ничто так отчетливо не проявляет культурного уровня человека, как его понимание смешного.

В чувстве прекрасного больше индивидуальных различий между людьми, оно тоньше и загадочнее, чем чувство смешного. Но в нем есть тот же динамизм, связанный с новизной впечатления. Частое повторение понравившегося музыкального произведения не только делает к нему равнодушным, но, в конце концов, внушает к нему отвращение. Острое ощущение прекрасного кратковременно, оно включает элемент откровения, восторженного удивления. Его можно описать также как внезапное усмотрение какого-то глубокого порядка, соответствия, смысла. Если пытаться дать кибернетическую интерпретацию этому явлению, можно предположить, что чувство прекрасного вызывают те впечатления, которые дают пищу для самых сложных и тонких моделей, реализующихся с помощью классификаторов высшего уровня. Эти классификаторы должны, очевидно, в максимальной степени сжимать информацию, распознавать чрезвычайно сложные понятия. А это и есть усмотрение глубокого внутреннего порядка в кажущемся беспорядке.

Все модели иерархичны. Более сложное строится из более простого, высшее опирается на низшее. Человек может быть недостаточно развит эстетически и не видеть красоты там, где ее видят другие.


Неподготовленному слушателю шедевр симфонической музыки покажется бессмысленным нагромождением звуков. С другой стороны, банальная мелодия или примитивный геометрический орнамент не вызовут у нас ощущения прекрасного: здесь порядок слишком очевиден. «У нас» — это у современного цивилизованного человека. Возможно, неандерталец, увидев серию точно вычерченных концентрических окружностей, был бы потрясен до глубины души. Прекрасное тоже всегда на грани между тривиальным и непонятным. Передвижение этой грани — эстетическое воспитание — есть познание мира, построение в мозгу новых моделей.

Мы берем чувство прекрасного в его, если угодно, чистом виде. В действительности оно бывает связано с другими человеческими чувствами, образуя часто неразрывные комплексы и влияя поэтому на многие сферы и аспекты общественной жизни. Это значение эстетических переживаний, которое можно назвать прикладным, признано давно и безусловно. С чистой эстетикой дело обстоит хуже. На протяжении всей истории человечества время от времени раздавались призывы покончить с нею раз и навсегда, как с чем-то не только бесполезным, но и прямо вредным. (Вредность понималась по-разному. Одни объявляли красоту греховной, другие — отвлекающей от классовой борьбы.) И напротив, делались попытки вульгарно-материалистического толка объяснить и «оправдать» прекрасное, сведя его к полезному в самом житейском, бытовом смысле слова. Последнее выглядит так, как если бы кто-то стал расхваливать транзисторный приемник, уверяя, что им можно забивать гвозди и колоть орехи. Это отношение вытекает из непонимания того факта, что чисто эстетическое воспитание есть подготовка мозга к выполнению его самых тонких и высших функций. Мозг един. Модели, созданные в процессе эстетического воспитания, несомненно влияют на восприятие мира человеком, на его творческую деятельность. Как это происходит, в точности неизвестно. Тем ценнее эстетическое воспитание, ибо мы не знаем, чем его можно заменить.


Снова о понятиях


Начнем с фундаментальнейшего понятия логики — понятия «понятие». Выше (в главе 2) мы дали кибернетическое определение этого понятия в его аристотелевском варианте. Мы определили понятие как множество ситуаций на входе кибернетической системы. Владеть понятием — значит уметь его распознавать, т. е. уметь определить, принадлежит ли любая данная ситуация к множеству, характеризующему понятие, или не принадлежит. Это определение в равной степени относится и к сложным кибернетическим системам естественного происхождения, об устройстве которых мы имеем лишь общее представление (например, мозг животного), и к тем относительно простым системам, которые создаем мы сами с прикладными или исследовательскими целями.

В первом случае мы приходим к выводу, что система распознает некое понятие, на основе наблюдения за внешними проявлениями деятельности системы. Например, когда мы видим, что собака приходит в радостное возбуждение, заслышав голос хозяина, и совсем иначе реагирует на все остальные звуки, мы заключаем, что собака имеет понятие «голос хозяина». Это понятие вырабатывается у нее естественным путем, без каких-либо усилий со стороны экспериментатора. Чтобы выявить максимальные возможности мозга собаки, экспериментатор может ставить ее в необычайные условия и следить за ее реакцией. Много опытов такого рода было проведено И.П.Павловым и его школой. Если показать собаке фанерные круги и квадраты разного размера и цвета и после предъявления круга давать пищу, а после предъявления квадрата наказывать, то собака научится различать круг и квадрат и будет по-разному реагировать на предъявление этих фигур. Следовательно, собака способна распознавать некоторые общие (абстрактные) понятия, в данном случае — понятия круга и квадрата, отвлеченные от признаков размера и цвета. Значит, мы должны заключить, что собака владеет абстрактными понятиями «круг» и «квадрат».

Но, едва произнеся эту фразу, мы начинаем чувствовать, что такое заключение, пожалуй, было бы слишком поспешным. Утверждение, что собаке доступно понятие «голос хозяина» (имеется в виду, конечно, голос конкретного человека), можно принять без оговорок, но вот утверждение, что собаке доступно понятие квадрата, представляется в каком-то смысле верным, а в каком-то нет.
Заметим это себе, чтобы вернуться к этому вопросу позже. А пока завершим экскурс в область умственных способностей собаки указанием на простейшие понятия, которые собаке заведомо недоступны. Предположим, что вы показываете собаке ящик, разделенный на две части, в каждой из которых находится несколько биллиардных шаров. Вы хотите заставить ее отличить случай, когда число шаров в обеих частях одинаково, от случая, когда число шаров различно. Можно держать пари, вы не достигнете цели. Понятие равночисленности собаке недоступно.

Кибернетические системы, обладающие способностью распознавания понятий, создаются также искусственно. В связи с кибернетизацией науки и производства их значение непрерывно возрастает. Для понимания общих принципов и конкретных механизмов работы мозга разработка искусственных распознающих устройств играет решающую роль. Эти устройства служат моделями, с помощью которых люди пытаются приподнять завесу над процессом мышления. Создание «искусственного мозга», выполняющего хотя бы частично те же функции, что и естественный мозг, дает указания о том, как подходить к исследованию деятельности естественного мозга. Интересно, что одним из первых результатов сравнения искусственных и естественных распознающих систем был вывод о чрезвычайно узкой целенаправленности, специализации естественных систем. В рамках своей специализации они достигают высокого совершенства, но зато оказываются совершенно бессильными, когда задача выходит за эти рамки. Распознавание человека по голосу — чрезвычайно трудная задача для искусственных кибернетических устройств, а мозг собаки решает ее без труда. В то же время простейшая для искусственной системы задача сравнения числа биллиардных шаров непосильна для собаки.

В главе 2 мы рассматривали распознающее кибернетическое устройство, на вход которого подавались сигналы от светочувствительных рецепторов, расположенных на экране. Ситуацию, т. е. совокупность значений всех сигналов от рецепторов, мы называли «картинкой»; с точностью до полутонов она совпадает с изображением на экране.Это устройство (распознаватель картинок) послужит нам для иллюстраций и в настоящей главе.


Социальная интеграция


Метасистемный переход в системе мозга — управление ассоциированием — породил новый процесс — социальную интеграцию, т. е. объединение человеческих индивидуумов в некую целостность нового типа: человеческое общество. Вся история человечества проходит под знаком социальной интеграции, связи между людьми возрастают в количественном и качественном отношении. Этот процесс протекает и в настоящее время, причем весьма интенсивно, и вряд ли кто-либо может уверенно ответить на вопрос, как далеко он пойдет.

Социальная интеграция — это метасистемный переход, она приводит к новому уровню возникновения материи — социальной сфере. Сообщества животных можно рассматривать как первые (и безуспешные) попытки осуществить этот переход. Мы знаем сообщества животных, например муравьев, в которых отдельные особи настолько приспособлены к жизни в сообществе, что не могут жить вне его. Муравейник с полным правом можно назвать единым организмом, так далеко зашли в нем взаимодействие между особями и их специализация. Но это взаимодействие остается на уровне низших функций. «Контакта мозгов» нет. Создания новых моделей действительности нет. Никаких принципиально новых возможностей из-за объединения муравьев в общество не открывается, оно застывает в своем развитии. Муравейник, конечно, является метасистемой по отношению к отдельному муравью. Интеграция индивидуумов имеет место. Но это не новый этап эволюции, а боковое ответвление, тупик. В русской литературе сложилась традиция: слово' «социальное», которое буквально означает «общественное», относить только к человеческому обществу, подчеркивая этим его принципиальное отличие от общества животных. В этом смысле надо понимать термины «социальная сфера» и «социальная интеграция».

Итак, попытки природы образовать новый этап организации материи путем интеграции многоклеточных организмов долгое время не приводили к значительным результатам: не было подходящего материала. Понадобился метасистемный переход в структуре мозга, чтобы индивидуумы приобрели способность образовывать необходимые связи.
И еще одно следствие управления ассоциациями имеет важнейшее значение для развития социальной сферы — это способность человека выйти за рамки инстинкта, строить планы действий, никак с ним не связанные, а порой даже ему противоречащие. Эти два свойства делают человека социальным существом, т. е. материалом, пригодным для построения человеческого общества — социума. Слово «материал», сказанное о человеке, коробит; оно звучит как-то унизительно. В самом деле, разве есть какое-то высшее существо, которое строит общество, пользуясь человеком как материалом? Нет, конечно. Человек сам — творец. Причем не какой-то абстрактный Человек (с большой буквы), а конкретный человек, человеческая личность, индивидуум. Все, чем обладает общество, создано творчеством человеческих индивидуумов. А в то же время — такова диалектика отношения между личностью и обществом — человек значителен лишь постольку, поскольку он значителен для общества. Это, конечно, не надо понимать так, что кто не признан, тот не гений. Человек может выступать против всего общества, т. е. против всех живущих в данный момент людей, и руководствоваться в то же время интересами общества, логикой развития общества. Есть два уровня организации материи: уровень животного, для которого высшие законы — это инстинкты самосохранения и размножения, и уровень человека, т. е. человеческого общества. Все, что в человеке мы называем собственно человеческим, — продукт развития общества. Человек как чисто биологическое (в смысле досоциальное) существо — это лишь «возможность» человека в полном смысле слова, и не более. Если в действиях человека есть хоть какая-то логика, то это либо логика животных инстинктов, либо логика развития общества, быть может завуалированная и не осознаваемая в качестве таковой. Другой логике просто неоткуда взяться. Поэтому человек, выступая как творец, все-таки подчиняется хотя и не существу, но какому-то высшему закону эволюции Вселенной и, можно сказать, является материалом для его действия.


Соотношение неопределенностей


Квантовая механика разрушила это представление. Она была вынуждена это сделать под напором новых экспериментальных данных. Оказалось, что элементарные частицы ведут себя при определенных условиях не как частицы, а как волны, но при этом они не «размазываются» по большой области пространства, а сохраняют свои малые размеры и свою дискретность, размазывается же лишь вероятность их обнаружения в той или иной точке пространства.

Рис. 13.1. Дифракция электронов

Рассмотрим в качестве иллюстрации рис. 13.1. На нем изображена электронная пушка, посылающая электроны определенного импульса на диафрагму, за которой расположен экран. Диафрагма сделана из непрозрачного для электронов материала, но имеет два отверстия, через которые электроны и попадают на экран. Экран покрыт веществом, которое светится под действием электронов, так что в том месте, куда попал электрон, происходит вспышка. Поток электронов из пушки достаточно редкий, так что каждый электрон проходит через диафрагму и фиксируется на экране независимо от других. Расстояние между отверстиями в диафрагме во много раз больше размеров электронов, полученных любыми оценками, но сравнимо по порядку с величиной h/p, где h — константа Планка, а p — импульс электрона, т. е. произведение его скорости на массу.

Таковы условия эксперимента. Результатом его является распределение вспышек на экране. Первый вывод из анализа результатов эксперимента таков: электроны попадают в различные точки экрана, и предсказать, в какую точку попадет каждый электрон, невозможно, можно только предсказать вероятность попадания в ту или иную точку, т. е. среднюю плотность вспышек после попадания в экран очень большого числа электронов.

Но это еще полбеды. Можно представить себе, что различные электроны пролетают в разных местах отверстий в диафрагме, испытывают различной силы влияния со стороны краев отверстий и поэтому отклоняются по-разному. Настоящие неприятности возникают тогда, когда мы начинаем исследовать среднюю плотность вспышек на экране и сравнивать ее с теми результатами, которые получаются, когда мы закрываем одно из отверстий в диафрагме.
Если электрон — это маленькая частица материи, то, попадая в район диафрагмы, он либо поглощается, либо проходит через одно из двух отверстий. Так как отверстия диафрагмы расположены симметрично относительно электронной пушки, в среднем половина электронов проходит через каждое отверстие. Значит, если мы закроем одно из отверстий и пропустим через диафрагму миллион электронов, а затем закроем второе отверстие, но откроем первое и пропустим еще миллион электронов, то мы должны получить такую же среднюю плотность вспышек, как если бы мы пропустили через диафрагму с двумя отверстиями два миллиона электронов. Но оказывается, что это не так! При двух отверстиях распределение получается иным, оно содержит максимумы и минимумы, как при дифракции волн.

Рассчитать среднюю плотность вспышек можно с помощью квантовой механики, связав с электронами так называемую волновую функцию, представляющую собой некое воображаемое поле, интенсивность которого пропорциональна вероятности наблюдаемых событий.

У нас отняло бы слишком много места описание всех попыток согласовать представление об электроне как об «обычной» частице (такие частицы стали называть классическими в отличие от квантовых) с экспериментальными данными об их поведении. Этому вопросу посвящена обширная литература, как специальная, так и популярная. Все такие попытки оказались безуспешными. Выяснились следующие две вещи.

Во-первых, если одновременно измеряется координата квантовой частицы (любой, не обязательно электронов) по некоторой оси х и импульс в этом направлении р, то ошибки измерения, которые мы обозначим через x; и p соответственно, подчиняются соотношению неопределенностей Гейзенберга:

?x × ?p ? h.

Никакими ухищрениями обойти это соотношение нельзя. Чем точнее мы пытаемся измерить координаты, тем больше оказывается разброс по величине импульса р, и наоборот. Соотношение неопределенностей есть универсальный закон природы, но, так как постоянная Планка h весьма мала, при измерениях с телами макроскопического размера оно роли не играет.

Во-вторых, представление о том, что на самом деле квантовые частицы движутся по каким-то вполне определенным траекториям, т. е. в каждый момент времени на самом деле имеют вполне определенные координату и скорость (а значит, и импульс), которые мы просто не можем точно измерить, наталкивается на непреодолимые логические трудности. Напротив, принципиальный отказ от приписывания квантовой частице реальной траектории и принятие положения, что самое полное описание состояния частиц — это задание ее волновой функции, приводят к логически безупречной, а математически простой и изящной теории, которая блестяще согласуется с экспериментальными фактами; в частности, из нее немедленно вытекает соотношение неопределенностей. Эта теория — квантовая механика. В уяснении физических и логических основ квантовой механики и в ее философском осмыслении главную роль сыграла деятельность крупнейшего ученого-философа нашего времени Нильса Бора (1885–1962).


Структурные и функциональные схемы


На структурной схеме кибернетической системы указывается, из каких подсистем состоит данная система. Часто указывается также, как направлены потоки информации между подсистемами. Тогда структурная схема превращается в граф. В математике называют графом систему точек (вершин графа), некоторые из которых соединены линиями (дугами). Граф называется ориентированным, если на каждой дуге указано определенное направление. Структурная схема с указанием потоков информации есть ориентированный граф, вершины которого изображают подсистемы, а дуги — потоки информации.

Такое описание кибернетической системы не является единственно возможным. Часто нас интересует не столько структура системы, сколько ее функционирование, действие. Еще чаще мы просто ничего не можем сказать толком о структуре, но кое-что можем сказать о функционировании. В таких случаях можно построить функциональную схему. Это тоже ориентированный граф, но вершины здесь изображают различные множества состояний системы, а дуги — возможные переходы между состояниями. Дуга соединяет две вершины в направлении от первой ко второй в том случае, если хотя бы из одного состояния, относящегося к первой вершине, возможен переход в какое-либо состояние, относящееся ко второй вершине. Множества состояний мы будем называть обобщенными состояниями. Следовательно, дуга на схеме указывает возможность перехода из одного обобщенного состояния в другое. Если структурная схема отражает главным образом пространственный аспект, то функциональная — главным образом временной. Формально в соответствии с данным выше определением функциональная схема вообще никак не отражает пространственного аспекта — разделения системы на подсистемы. Однако, как правило, разделение на подсистемы находит отражение в способе определения обобщенных состояний, т. е. разделения множества всех состояний системы на подмножества, «приписанные» к различным вершинам графа. Разберем это на примере системы, структурная схема которой представлена на рис. 2.12.
Это схема управления.



Рис. 2.12. Структурная схема управления

Одна из подсистем, называемая управляющим устройством, получает информацию от «рабочих» подсистем A1, A2, A3, …, перерабатывает ее и посылает подсистемам A1, A2, A3, … приказы (управляющую информацию), вследствие чего эти подсистемы меняют свое состояние. Надо отметить, что, строго говоря, любая информация меняет состояние системы, которая ее получает. Информацию называют управляющей в том случае, когда она меняет некоторые выделенные параметры системы, описываемые как «основные», «внешние», «наблюдаемые» и т. п. Часто бывает, что управляющее устройство по своей информационной емкости и пропускной способности невелико и служит лишь для переключения информационных потоков, а реальная обработка данных и выработка приказов производятся одной из подсистем A1, A2, A3, … или в соответствии с хранящейся в ней информацией. Тогда говорят, что управление переходит в эту подсистему. Так, в частности, обстоит дело в вычислительной машине, где A1, A2, A3, … — это ячейки оперативной памяти. Одни из ячеек содержат пассивную информацию (например, числа), другие — приказы (команды). Когда управление находится в ячейке, содержащей команду, управляющее устройство выполняет эту команду. Затем оно передает управление в другую ячейку и т. д.



Рис. 2.13. Функциональная схема передачи управления

Для систем с передачей управления функциональную схему строят следующим образом. Каждой вершине графа сопоставляют одну из подсистем A, и множество всех состояний системы, при которых управление находится в данной подсистеме. Тогда дуги (стрелки) означают передачу управления от одной подсистемы к другой (рис. 2.13). На такой схеме даже при полной детерминированности каждого следующего состояния предыдущим могут быть разветвления благодаря тому, что каждая вершина соответствует обширному множеству состояний и передача управления может зависеть от состояния управляющего устройства или подсистемы, в которой находится управление.


Функциональные схемы часто рисуют обобщенно, пропуская какие-то несущественные детали и шаги. Тогда может оказаться, что то, по какому пути в разветвлении перейдет управление, зависит от состояния нескольких различных подсистем. Условие, при котором осуществляется данный переход, обычно выписывают рядом со стрелкой. Схему на рис. 2.10 можно понимать в таком именно смысле. Тогда в ней подразумевается, что система имеет две подсистемы: блок проверки и блок выполнения операции, и управление переходит из одной в другую в соответствии со стрелками. У системы могут быть и другие подсистемы (в данном случае — среда), но они никогда не получают управления и поэтому не изображаются на схеме (точнее, те моменты, когда среда меняет состояние системы или меняет свое состояние под действием системы, включаются в процесс действия одного из блоков).

Можно отойти еще дальше от структурной схемы. Передача управления в некоторую подсистему означает ее активацию, т. е. выполнение того действия, для которого подсистема предназначена. Но мы можем и не знать, какая подсистема отвечает за данное наблюдаемое действие. Тогда вершины графа мы будем отождествлять с действиями как таковыми, а другие будут означать переход от одного действия к другому. Понятие «действие как таковое», если определять его строго, надо отождествлять с понятием «обобщенное состояние» («множество состояний»), и это возвращает нас к первому — самому абстрактному — определению функциональной схемы. В самом деле, когда мы говорим, что собака «бежит», «лает» или «вертит хвостом», то под каждое из этих определений подходит множество конкретных состояний собаки. Правда, здесь бросается в глаза одна несообразность: «состояние» есть нечто статическое, в то время как «действие» — нечто явно динамическое, скорее изменение состояния, чем само состояние. Если на мгновенной фотографии хвост собаки не выходит из плоскости симметрии, то еще неизвестно, вертит она им или он застыл в неподвижности. Это противоречие снимается тем замечанием, что в понятие состояния входят не только величины типа «положение», но и величины типа «скорость», «ускорение» и т.д. В частности, указание состояния собаки включает указание напряженности мышц ее хвоста и возбужденности всех нейронов, регулирующих состояние мышц.


Структурный подход


Логическое понятие мы определяем как элемент функционирования языковой системы. Теперь мы попытаемся дать общее определение кибернетического понятия «понятие», опираясь не на функциональный, а на структурный подход.

Рассмотрим снова понятие «внутри» в приложении к распознавателю картинок. Как мы стали бы строить систему, имеющую понятие «внутри»? Очевидно, сначала мы должны были бы сконструировать классификаторы для понятий «пятно» и «контур». Напомним, что классификатор — это кибернетическая система, которая распознает принадлежность входного состояния (ситуации) к определенному множеству (аристотелевскому понятию) и перерабатывает его в выходное состояние, отражающее важнейшие характеристики ситуации. Например, классификатор пятна распознает наличие пятна и фиксирует координаты точек, ограничивающие его. На рис. 7.4 мы обозначили П1, П2,... и K1, K2,... классификаторы пятен и контуров соответственно. Эти классификаторы образуют первый уровень иерархии, ибо их вход — состояние рецепторов. Они переводят ситуации с языка светящихся точек на язык пятен и контуров.

Построив первый уровень, мы принимаемся за второй. Мы конструируем классификатор В (см. рис. 7.4), на вход которого подается выход одного классификатора пятна, пусть это будет Пi, и одного классификатора контура Кj. Выходных состояний у классификатора В должно быть всего два: одно («да») наступает, когда пятно, фиксируемое классификатором Пi, лежит внутри контура, фиксируемого классификатором Кj, а второе («нет») — в противном случае. Нам хотелось бы, чтобы классификатор В можно было бы применить к любой паре (Пi, Кj). Но было бы безумием делать столько экземпляров В, сколько есть пар (Пi, Кj)! Поэтому нам необходим какой-то переключатель, с помощью которого на одно-единственное устройство В можно было бы подать информацию из разных точек системы. Так как бессмысленно подавать на классификатор информацию непосредственно от рецепторов или из каких-либо других неподходящих точек, переключатель следует сконструировать таким образом, чтобы он мог подать информацию от любой из пар (Пi, Кj) и никак иначе.



П — пятно, К — контур, В — внутри, ВВ — войти внутри.

Рис. 7.4. Иерархия классификаторов

Классификатор В расположен на втором уровне системы в целом. Возможно, что он будет использован в качестве входа для третьего уровня. Допустим, например, что от системы требуется распознать понятие «войти в...» Это понятие динамическое, оно связано с временем. В качестве входа здесь надо рассматривать не одну ситуацию, а их последовательность, то, что было выше названо кинолентой ситуаций. При наличии такой киноленты мы говорим, что пятно «вошло в» контур, если сначала оно было вне контура, а потом стало внутри него. Очевидно, распознаватель понятия «войти в» (на рис. 7.4 он обозначен ВВ ) будет на своем входе требовать выхода от распознавателя В или нескольких распознавателей В, относящихся к различным кадрам киноленты (в первом случае он должен иметь устройство для хранения последовательности ответов «да» или «нет»).

Получилась иерархия классификаторов. Это для нас не ново, мы уже рассматривали иерархию классификаторов в главе 2. Но в главе 2 мы ограничивались аристотелевскими понятиями, при этом иерархия классификаторов выступала только как средство распознавания понятий и не входила в определение понятия «понятие». Понятие «понятие» (аристотелевское) мы определили независимо от устройства иерархии классификаторов как некоторое множество ситуаций, иначе говоря, как функцию, принимающую истинное значение «верно» на данном множестве ситуаций.

Теперь же, ища кибернетическое истолкование таких понятий, как «внутри», мы видим, что не можем определить общее понятие «понятие», опираясь только на уровень рецепторов, а можем определить его лишь как элемент системы понятий. Понятию «внутри» соответствует на рис. 7.4 классификатор В не только как устройство, перерабатывающее данный вход в данный выход, но и как подсистема всей системы распознавания, т. е. как элемент, связанный определенным образом с другими элементами системы (в данном случае получивший входную информацию от одного классификатора типа П и одного классификатора типа К).



Мы построили кибернетическую модель понятия «внутри». Но как связана эта модель с действительностью? Какое отношение она имеет к настоящему понятию «внутри», которое проявляется в языке и представляется нам одним из элементов нашего мышления? Можно ли утверждать, что в мозгу есть классификатор, в точности соответствующий этому понятию? Хотя общий вид схемы на рис. 7.4 — наличие рецепторов и классификаторов — отражает нейрофизиологические данные, конкретные функции классификаторов и взаимосвязь между ними отражают данные логики. Поэтому наша схема — не модель устройства, мозга, а модель функционирования языковой системы, точнее структурная схема устройства, которое могло бы выполнять функции, обнаруживаемые в языковой деятельности. В этом устройстве классификаторы выполняют функции, описываемые логическими понятиями, а переключатели (на схеме не показаны, но в тексте упоминались) фиксируют область определения понятий.

Схему на рис. 7.4 можно воплотить в реальном кибернетическом устройстве, для которого источником информации будут светящиеся точки экрана. Но, если такое устройство будет работать даже очень хорошо, это еще не дает нам, строго говоря, права считать его моделью устройства мозга. Быть может, то расчленение нервных сетей на классификаторы, которое подсказывает рис. 7.4, или аналогичные схемы, взятые из функционирования языка, совершенно не отражают истинного устройства мозга!


Субстанция


Среднеевропейский стандарт имеет два вида существительных, обозначающих материальные части окружающего нас мира. Существительные первой группы: «a tree — дерево», «a stick — палка», «a man — мужчина» и т. п. — относятся к отдельным предметам, имеющим определенную форму. Существительные второй группы: «water — вода», «milk — молоко», «meat — мясо» — обозначают однородную массу, не имеющую определенных границ. Между этими группами существует весьма четкое грамматическое различие: у существительных, обозначающих вещества, нет множественного числа; в английском языке перед ними опускается артикль, во французском языке ставится партитивный артикль. Однако если вдуматься в смысл различия между этими двумя видами предметов, то станет ясно, что в действительности они не отличаются друг от друга так четко, как в языке, а пожалуй, и вообще ничем не отличаются. И вода, и молоко, и мясо встречаются в природе только в виде больших или малых тел определенной формы. Различие между двумя группами существительных навязывается нам языком и часто оказывается столь неудобным, что приходится пользоваться такими конструкциями, как «кусок мяса» или «стакан воды», хотя слово «кусок» не указывает никакой определенной формы, а слово «стакан» хотя и предполагает определенную форму, но тем самым вносит только путаницу, ибо, говоря «стакан воды», мы имеем в виду лишь количество воды, но не форму ее в сосуде. Наш язык нисколько не потерял бы в изобразительной силе, если бы слово «мясо» обозначало кусок мяса, слово «вода» — некоторое количество воды.

Именно так обстоит дело в языке хопи. Все существительные обозначают у них отдельные предметы и имеют единственное и множественное число. Существительные, которые мы переводим как существительные второй группы (вещества) относятся к телам, у которых форма и размеры не отсутствуют, а просто не указываются, игнорируются в процессе абстракции подобно тому, как в понятии « камень» отсутствует указание на форму, в понятии «шар» — на размер.

Поэтому понятие субстанции как чего-то, имеющего материальное бытие и в то же время принципиально не имеющего никакой формы, не могло бы, по-видимому, возникнуть у хопи и быть понятым человеком, говорящим только на языке хопи. В европейской культуре понятие субстанции возникает как обобщение понятий, выражаемых существительными второй группы, в то время как обобщение понятий, выражаемых существительными первой группы, приводит к понятию предмета. Для хопи, в языке которого деления существительных на две группы нет, возможно только одно обобщение и оно, конечно, приводит к понятию предмета (или тела), ибо можно отвлечься от формы наблюдаемого материального объекта, но нельзя сказать, что она не существует. Мысленно расчленение всего сущего на некую нематериальную форму и материальное, но бесформенное содержание (субстанцию), столь характерное для традиционной европейской философии, покажется, вероятно, хопи надуманным и ненужным. И он будет прав! (Это уже замечание не Уорфа, а автора настоящей книги.) Понятие субстанции, игравшее такую важную роль в спорах средневековых схоластов, совершенно исчезло из современной науки.



о которых мы говорили выше,


Успехи квантовой механики, о которых мы говорили выше, относятся главным образом к описанию нерелятивистских частиц, т. е. частиц, движущихся со скоростями, много меньшими, чем скорость света, так что эффектами, связанными с теорией относительности (релятивистскими эффектами), можно пренебречь. Именно нерелятивистскую квантовую механику мы имели в виду, когда говорили о ее полноте и логической стройности. Нерелятивистская квантовая механика достаточна для описания явлений атомного уровня, но физика элементарных частиц высоких энергий требует создания теории, совмещающей идеи квантовой механики и теории относительности. До сих пор на этом пути достигнуты лишь частичные успехи; единой и последовательной теории элементарных частиц, объясняющей огромный материал, накопленный экспериментаторами, не существует. Попытки построить новую теорию путем непринципиальных исправлений старой теории не приводят к значительным результатам. Создание удовлетворительной теории элементарных частиц упирается в чрезвычайную своеобразность этой области явлений, происходящих как бы в совсем ином мире и требующих для своего описания совершенно необычных понятий, в самой основе расходящихся с привычной нам понятной схемой.

В конце 50-х годов Гейзенберг предложил новую теорию элементарных частиц, ознакомившись с которой Бор сказал, что она вряд ли окажется верной, потому что она «недостаточно сумасшедшая». Теория действительно не получила признания, а меткое замечание Бора стало известно всем физикам и даже попало в популярную литературу. Словечко «сумасшедшая» естественным образом ассоциировалось с эпитетом «странный», применяемым к миру элементарных частиц. Но означает ли «сумасшедшая» только «странная», «необычная»? Пожалуй, если бы Бор сказал «недостаточно необычная», афоризма не получилось бы. Слово «сумасшедшая» вносит оттенок «шальная», «взявшаяся неизвестно откуда» и блестяще характеризует нынешнюю ситуацию в теории элементарных частиц, когда всеми признается необходимость глубокой перестройки теории, но, как к ней приступить, неизвестно.



Возникает вопрос: неужели «странность» мира элементарных частиц, неприменимость к нему нашей интуиции, выработанной в макромире, обрекает нас отныне и навечно на блуждание в темноте?

Вдумаемся в природу возникших трудностей. Принцип создания формализованных языковых моделей действительности не пострадал при переходе к изучению микромира. Но если колесики этих моделей — физические понятия — брались в своей основе из нашего повседневного макроскопического опыта и лишь уточнялись путем формализации, то для нового «странного» мира нужны новые «странные» понятия, которые взять неоткуда и которые придется, следовательно, изготовлять заново, да еще и соединить их должным образом в целостную схему. На первом этапе исследования микромира одно из таких колесиков — волновая функция нерелятивистской квантовой механики — было изготовлено сравнительно легко, опираясь на уже существовавший математический аппарат, служивший для описания макроскопических явлений (механика материальной точки, механика сплошных сред, теория матриц). Физикам просто повезло: они нашли прообразы необходимого им колесика в двух (совершенно различных) колесиках макроскопической физики и составили из них «кентавра» — квантовое понятие волны-частицы.

Однако нельзя все время рассчитывать на везение. Чем глубже мы проникаем в микромир, тем сильнее отличаются необходимые понятия-конструкты от привычных понятий макроскопического опыта и тем меньше вероятность соорудить их с ходу, без всяких инструментов, без всякой теории. Следовательно, мы должны подвергнуть научному анализу саму задачу построения научных понятий и теорий, т. е. совершить очередной метасистемный переход. Чтобы квалифицированно построить определенную физическую теорию, нам нужна общая теория построения физических теорий (метатеория), в свете которой прояснится путь решения нашей конкретной задачи. Сравнение наглядных моделей старой физики с лошадью, а абстрактных знаковых моделей с паровозом, можно развить следующим образом. Лошади предоставлены в наше распоряжение природой.


Они растут и размножаются сами по себе, и чтобы использовать их, не нужно знать их внутреннее устройство. Но паровоз мы должны построить сами. Для этого мы должны понять принципы его устройства и физические законы, лежащие в их основе, а также иметь какие-то инструменты для работы. Пытаясь построить теорию «странного» мира, не имея метатеории физических теорий, мы уподобляемся человеку, который задумал построить паровоз голыми руками или построить самолет, не имея представления о законах аэродинамики.

Итак, созрел очередной метасистемный переход. Физика требует... хочется сказать «метафизики», но, к счастью для нашей терминологии, нужная нам метатеория является таковой по отношению к любой естественнонаучной теории, имеющей высокую степень формализации, поэтому ее правильнее назвать метанаукой. Этот термин обладает тем недостатком, что создает впечатление, будто метанаука есть нечто, принципиально лежащее вне науки, в то время как в действительности новый уровень иерархии, создаваемый этим метасистемным переходом, надо, конечно, включить и в общее тело науки, расширяя тем самым это тело. Ситуация здесь такая же, как с термином метаматематика; ведь метаматематика — это тоже часть математики. Но поскольку термин «метаматематика» был все-таки принят, можно считать приемлемым и термин «метанаука». Впрочем, поскольку важнейшая часть метанаучного исследования — исследование понятий теории, можно предложить также термин концептология.

Основную задачу метанауки можно сформулировать так. Дана некая совокупность или некий генератор фактов. Каким образом построить теорию, эффективно описывающую эти факты и делающую правильные предсказания?

Если мы хотим, чтобы метанаука вышла за рамки общих рассуждений, то надо строить ее как полноценную математическую теорию, а для этого ее объект — естественнонаучная теория — должен предстать в формализованном (пускай упрощенном — такова цена формализации) виде, подвластном математике. Представленная в таком виде научная теория есть формализованная языковая модель, механизм которой составляет иерархическая система понятий — точка зрения, которую мы приводили на протяжении всей книги.


С этой точки зрения создание математической метанауки представляется очередным и естественным метасистемным переходом, совершая который мы делаем предметом изучения формализованные языки в целом, причем не только в отношении их синтаксиса, но также — и главным образом — с точки зрения семантики, с точки зрения их приложения к описанию действительности. К этому шагу нас подводит весь путь развития физико-математической науки.

Впрочем, до сих пор мы в своих рассуждениях исходили из потребностей физики. А как обстоит дело с точки зрения чистой математики?

Если физики-теоретики знают, что им нужно, но сделать могут немного, то «чистых» математиков можно, скорее, упрекнуть в том, что они сделать могут много, но не знают, что им нужно. Нет спору, многие чисто математические работы нужны для придания связности и стройности всему зданию математики, и смешно было бы требовать от каждой работы немедленных «практических» приложений. Но все-таки математика создается для познания действительности, а не с эстетическими или спортивными целями, подобно шахматам, и даже самые высокие ее этажи нужны, в конечном счете, лишь постольку, поскольку они способствуют достижению этой цели.

Вероятно, рост здания математики ввысь нужен всегда и представляет собой безусловную ценность. Но математика разрастается также и вширь, и все труднее становится определить, что не нужно, а что нужно, и если нужно, то в какой степени. Математическая техника развита сейчас настолько, что сконструировать в рамках аксиоматического метода несколько новых математических объектов и исследовать их свойства стало чуть ли не таким же обыкновенным, хотя и не всегда легким делом, как для древнеегипетских писцов произвести вычисления над дробями. Но, кто знает, понадобятся ли эти объекты? Возникает потребность в теории приложения математики, а это по существу и есть метанаука. Следовательно, развитие метанауки — это направляющая и организующая задача по отношению к более конкретным математическим задачам.

До создания эффективной метанауки пока еще далеко.


Сейчас трудно представить даже ее общие контуры. Чтобы они прояснились, необходимо выполнить еще много подготовительных работ. Физики должны овладеть «бурбакизмом», прочувствовать игру математических структур, которая приводит к возникновению богатых аксиоматических теорий, пригодных для детального описания реальности. Они должны вместе с математиками научиться раскладывать знаковые модели на отдельные кирпичики, чтобы складывать из них нужные им блоки. И, конечно, необходимо развитие техники проведения формальных выкладок над произвольными символьными выражениями (а не только числами) с помощью электронных вычислительных машин. Подобно тому, как переход от арифметики к алгебре происходит только после полного освоения техники арифметических вычислений, так и переход к теории создания произвольных символьных систем требует высокой техники действий над символьными выражениями, требует практического снятия проблемы выполнения громоздких формальных выкладок. Внесут ли новые методы вклад в разрешение тех конкретных трудностей, которые стоят сейчас перед теорией элементарных частиц, или же они будут раньше разрешены ручными, «дедовскими» методами, неизвестно, да это, в конце концов, и не важно, ибо, несомненно, появятся новые трудности. Так или иначе, вопрос о создании метанауки стоит на повестке дня. Рано или поздно он должен быть решен, и тогда люди получат новое оружие для покорения самых странных фантастических миров.

1 Bacon F. Novum Organum, Great books of the western world. Encyclopedia Britannica, 1955. Aphorism 95. P. 126.

2 Bacon F. Ор. cit. Aphorism 117. Р. 131.

3 Cм. сборник: Эйнштейн А. Физика и реальность. М.: Наука, 1965. Следующие ниже цитаты взяты также из этого сборника.

4 Frank P. Philosophy of science. Englewood Cliffs (New Jersey): Prentice-Hall, 1957.

5 Лаплас П. Опыт философии теории вероятностей. М., 1908. С. 9.

6 Этот раздел написан по мотивам статьи автора под таким же названием, опубликованной в журнале «Вопросы философии», 1968. N5.


Сваи, уходящие вглубь


Описание математических аксиом как моделей действительности, которые истинны не только в сфере реального опыта, но и в сфере воображения, опирается на их субъективное восприятие. Можно ли дать им более объективную характеристику. Воображение возникает на определенном этапе развития нервной системы как произвольное ассоциирование представлений. Предыдущим этапом был этап непроизвольного ассоциирования (уровень собаки). Естественно предположить, что переход от непроизвольного ассоциирования к произвольному не произвел существенной перемены в том материале, который имеется в распоряжении ассоциирующей системы, т. е. в представлениях, образующих ассоциации,— это следует из иерархического принципа устройства и развития нервной системы, при котором надстройка верхних этажей слабо влияет на нижние. Из того же принципа следует, что в процессе предыдущего перехода — от фиксированных понятий к непроизвольному ассоциированию — самые нижние уровни системы понятий остались неизменными и обусловили те всеобщие глубокие свойства представлений, которые были в наличии и до ассоциирования и которые ассоциирование изменить не может. Не может изменить их и воображение. Эти свойства инвариантны относительно преобразований, осуществляемых воображением. На них-то и опираются математические аксиомы. Если представить себе деятельность воображения как перетасовку и склейку каких-то элементов, «кусков» чувственного восприятия, то аксиомы — это модели, которые истинны для каждого куска и поэтому — для любой их комбинации. Способность воображения разрезать чувственный опыт на куски не безгранична, ибо, возникая на некотором этапе развития, оно принимает уже существующую систему понятий как некий фон, как основу, не подлежащую переделке. Такие глубокие понятия, как движение, тождество, непрерывность, заложены были в этом фоне, поэтому и модели, опирающиеся на эти понятия, оказываются универсально истинными не только для реального опыта, но и для любых конструкций, которые способно создать воображение.
Математика образует каркас здания естественных наук. Ее аксиомы — это сваи, уходящие в самую глубь нейронных понятий, ниже того уровня, где начинает хозяйничать воображение. Отсюда та прочность основы, которая отличает математику от эмпирического знания. Она пренебрегает поверхностными ассоциациями, составляющими каждодневный жизненный опыт, предпочитая продолжать строительство костяка системы понятий, начатого природой и заложенного в нижние уровни иерархии. И уже на этом костяке будут образовываться «необязательные» модели, которые мы относим к естественным наукам, как на базе врожденных и «обязательных» понятий низшего уровня образуются «необязательные» ассоциации представлений, составляющие содержание жизненного опыта. Требования, диктуемые математикой, обязательны; строя модели действительности, мы не можем обойти их, если бы даже захотели. Поэтому возможную неистинность теории мы всегда выносим за пределы сферы действия математики. Если обнаруживается расхождение между теорией и экспериментом, изменяют внешнюю, «необязательную» часть теории, но никому не приходит в голову высказать предположение, что в данном случае оказалось неверным равенство 2 + 2 = 4.

«Обязательность» классических математических моделей не противоречит появлению математических и физических теорий, которые, на первый взгляд, вступают в конфликт с нашей пространственно-временной интуицией (например, неевклидова геометрия или квантовая механика). Эти теории суть языковые модели действительности, полезность которых проявляется не в сфере повседневного опыта, а в весьма специальных ситуациях. Они не разрушают и не заменяют классических моделей, а продолжают их. Так, квантовая механика опирается на классическую. А какая теория может обойтись без арифметики? Парадоксы и противоречия возникают тогда, когда мы забываем, что понятия-конструкты, входящие в новую теорию, это — новые понятия, если даже их обозначают старыми именами. Мы говорим о «прямой» в неевклидовой геометрии и называем электрон «частицей», хотя языковая деятельность, связанная с этими словами, — доказательство теорем и квантово-механические выкладки — совсем не такая, как в прежних теориях, из которых были заимствованы термины.


Если дважды два не равно четырем, то либо два — не два, либо «жды» — не «жды», либо четыре — не четыре.

Особую роль математики в процессе познания можно выразить в виде утверждения, что математические понятия и аксиомы представляют собой не результат, а условие и форму познания действительности. Эта мысль была развита Кантом, и с ней можно согласиться, если рассматривать человека как полностью данное существо и не задавать себе вопроса: а почему человеку свойственны эти условия и формы познания? Но, задав этот вопрос, мы должны прийти к выводу, что они сами являются моделями действительности, выработанными в процессе эволюции (который в одном из важных своих аспектов есть не что иное, как процесс познания мира живыми структурами). С точки зрения законов природы принципиальной разницы между математическими и эмпирическими моделями нет; это разграничение отражает лишь наличие в устройстве человеческого мозга черты, отделяющей врожденные модели от благоприобретенных. Положение этой черты, надо полагать, содержит элемент исторической случайности. Проходи она в другом уровне, мы, возможно, были бы не в силах вообразить, что солнце может не взойти или что человек может парить над землей, как будто силы тяжести не существует.


Сверхсущество


Возникновение человеческого общества — крупномасштабный метасистемный переход, при котором интегрируемые подсистемы — это целые организмы. В этом плане его можно сравнить с возникновением многоклеточных организмов из одноклеточных. Однако его значение, его революционность неизмеримо больше. И если с чем-то сравнить его, то только с самим актом возникновения жизни. Ибо появление человека означает появление нового механизма усложнения организации материи, нового механизма эволюции Вселенной. До человека развитие и усовершенствование высшего уровня организации — устройства мозга — происходили лишь в результате борьбы за существование и естественного отбора. Это медленный процесс, требующий смены многих поколений. В человеческом обществе развитие языка и культуры является результатом творческих усилий всех его членов. Отбор вариантов, необходимый для усложнения организации материи по методу проб и ошибок, происходит теперь в голове человека. Он может происходить на уровне интуиции, представляясь результатом внезапного озарения, вдохновения, а может и распадаться на отдельные, отчетливо осознаваемые шаги; но так или иначе он становится неотделимым от волевого акта человеческой личности. Этот процесс существенно отличается от процесса естественного отбора и протекает несравненно более быстро, но по своей функции — построение и использование моделей окружающей среды — и по своим результатам — возрастание обшей массы живого вещества и его влияние на неживое — он полностью аналогичен первому процессу, он является его естественным продолжением. Человек становится сосредоточием Космического Творчества. Темп эволюции многократно возрастает.

Можно рассматривать общество как единое сверхсущество. Его «тело» — это тела всех людей плюс предметы, созданные и создаваемые людьми: одежда, жилища, машины, книги и т. д. Его «физиология» — это физиология всех людей плюс культура общества, т. е. определенный способ управлять предметным компонентом общественного тела и образом мышления людей.
Возникновение и развитие человеческого общества знаменуют начало нового (седьмого по нашему счету) этапа эволюции жизни (рис. 4.2). Функциональная формула метасистемного перехода от шестого к седьмому этапу такова:

Управление мышлением = Культура.

Язык входит в культуру в качестве важнейшей составной части, выполняя функции нервной системы. Как и у нервной системы многоклеточного организма, его первая, исторически и логически, функция — коммуникативная — обмен информацией между подсистемами, координация их деятельности. В процессе выполнения этой функции язык — опять-таки в точности так же, как и нервная система «этажом ниже», — получает вторую функцию — моделирование окружающей среды. И подобно тому, как в развитии мозга можно выделить этапы, связанные с метасистемными переходами, развитие языковых моделей происходит (как мы увидим дальше) путем последовательных метасистемных переходов в структуре языка.

Химическая эра

1. Химические основы жизни

2. Движение

3. Раздражимость (простой рефлекс)

Кибернетическая эра

4. Нервная сеть (сложный рефлекс)

5. Ассоциирование (условный рефлекс)

Эра разума

6. Мышление

7. Социальная интеграция, культура

Рис. 4.2. Этапы эволюции жизни

Параллели между обществом и многоклеточным организмом были подмечены давно. Но вот вопрос: как относиться к этим параллелям? Можно считать их если и не случайными, то, во всяком случае, поверхностными и малозначительными, что-то вроде сходства стрелы подъемного крана с руками человека. Однако кибернетический подход приводит нас к другой точке зрения, согласно которой аналогия между обществом и организмом имеет глубокий смысл, свидетельствуя о наличии чрезвычайно общих законов эволюции, действующих на всех уровнях организации материи, и указывая нам направление развития общества. Эта точка зрения таит в себе ту угрозу, что, будучи вульгаризована, она легко может привести к концепции тоталитарного государства фашистского типа. В главе 14, рассматривая проблему творческой свободы личности, мы более подробно рассмотрим и этот вопрос. А пока отметим, что возможность вульгаризации теории никак не может быть аргументом против ее истинности. Раздел современной науки, именуемый кибернетикой, дает нам понятия, описывающие эволюционный процесс как на уровне внутриклеточных структур, так и на уровне социальных явлений. Фундаментальное единство эволюционного процесса на всех уровнях организации превращается из философского воззрения в научно обоснованный факт. С ним нельзя не считаться, размышляя о судьбах человечества и его роли во Вселенной.

Подчеркивая космическое значение разума, французские ученые Леруа и Тейяр де Шарден ввели термин ноосфера (т. е. сфера разума) для обозначения той части биосферы, где господствует разум. Эти идеи были подхвачены нашим соотечественником В.П.Вернадским (см. его статью «Несколько слов о ноосфере»). В предисловии к своему главному сочинению «Феномен человека» Тейяр де Шарден пишет:

Я думаю, вряд ли у мыслящего существа бывает более великая минута, чем та, когда с глаз его спадает пелена и открывается, что он не затерянная в космическом безмолвии частица, а пункт сосредоточения и гоминизации универсального стремления к жизни. Человек — не статический центр мира, как он долго полагал, а ось и вершина эволюции, что много прекраснее1.

1 Тейяр де Шарден П. Феномен человека. М.: Наука, 1987.



Связка «такой, что»


Третья строка таблицы, приведенной в разделе 6.6, описывает конструкцию, которая высказыванию сопоставляет объект. В естественных языках эта конструкция употребляется чрезвычайно широко. Когда мы говорим «красный мяч», мы имеем в виду объект «мяч», который обладает свойством «красный», т. е. такой, что верно высказывание «красный» («мяч»). Высказывание об объекте мы переносим в прилагательное, относящееся к существительному, которым мы обозначили объект, в других случаях для этой цели могут служить причастия, причастные обороты, обороты со связками «который», «такой, что». Если мы пойдем дальше в этом анализе, то обнаружим, что и существительное, подобно прилагательному, указывает в первую очередь на определенное свойство (свойства) объекта. Слово «мяч», как и слово «красный», изображает некоторый класс объектов и ему можно сопоставить одноместный предикат «является мячом»(х), или просто «мяч»(х). Тогда «красный мяч» это такой предмет a, что верны высказывания «мяч»(a) и «красный»(a), иначе говоря, верно высказывание

«мяч»(a) ? «красный»(a)

Обратите внимание: в логической записи фигурирует три независимых элемента — буква a, предметы «мяч» и «красный», а в записи на естественном языке их остается только два «красный» и «мяч». Однако буква a, которую в логическую запись вводят для того, чтобы идентифицировать данный объект, отличить его от других, и которую поэтому называют идентификатором, не совсем исчезла в естественной записи. Она перешла в понятие «мяч», превратив его из свойства в предмет! В отличие от слова «красный» слово «мяч» идентифицирует — вы можете сказать «это тот мяч, который мы потеряли вчера» или «я имею в виду тот самый мяч, о котором говорил в предыдущей фразе».

Что же такое «предмет»?



Свойства и отношения


Примеры понятий, которые мы до сих пор приводили, укладывались в определение понятий как множества ситуаций. Но все ли понятия, которые представляются нам интуитивно ясными и проявляются в языке, таковы? Оказывается, не все. Возьмем, например, понятие, выражаемое предлогами «внутри» или «в» (в том же смысле). Если кому-нибудь не нравится, что понятие выражается предлогом, можно выразить его словосочетанием «находится в» или «нахождение в». Это понятие применимо к устройству, на вход которого подаются «картинки». Например, на рис. 6.1 пятно A находится внутри контура B. Но можем ли мы сопоставить понятию «внутри» какое-либо определенное множество картинок? Нет, не можем. Это видно, например, из рассмотрения картинок, изображенных на рис. 6.2. На картинке a пятно A находится внутри контура В, но не внутри контура C. На картинке b пятно A находится вне контура C, а пятно B — внутри него. Относить ли эти картинки к множеству ситуаций «внутри», которое нам надо было бы построить? Любой ответ будет неудовлетворительным и произвольным, ибо сам вопрос бессмыслен. Понятие «внутри» характеризует не картинку (ситуацию) в целом, а отношение между двумя определенными объектами — деталями картинки. Пока не указаны эти объекты — определенное пятно и определенный контур, ставить вопрос «внутри или не внутри» бессмысленно.

Рис. 6.1. Пятно внутри контура

Рис. 6.2. Пятна и контура



Точность сравнения величин


Легко видеть, что абсолютная точность сравнения измеримых объектов в математике и абсолютная однозначность математических утверждений являются просто следствием того, что язык математики представляет собой дискретную кибернетическую систему. В самом ли деле дискретную? По отношению к арифметике, алгебре и вообще к языку символов это не вызывает сомнения. Если головку у двойки увеличить или уменьшить, от этого она не превратится ни 2,01, ни в 1,99. Текст из N символов — это кибернетическая система из N подсистем, каждую из которых можно представлять себе в виде клеточки, содержащей символ; пусть полное число различных символов есть n, тогда каждая подсистема может находиться в одном из n состояний. Но геометрический язык — язык фигур — на первый взгляд представляется непрерывной системой. Линии на чертеже могут иметь произвольную длину, образовывать произвольные углы и т. д. И все же в действии геометрический язык оказывается дискретной системой. Детали геометрического чертежа такие, как значения длины отрезков и величин углов, не играют роли ни для хода доказательства, ни для декодирования чертежа. Существенны лишь такие особенности чертежа, как: пересекаются ли две данные прямые, проходит ли данная прямая через данную точку, лежит ли данная точка на пересечении данной прямой и данной окружности и т. п. Всю эту информацию можно закодировать текстом с помощью какой-либо специальной системы обозначений или просто на русском языке. Язык геометрии можно сравнить с языком игры в шахматы. Шахматные фигуры никогда не занимают строго центральное положение в квадратах шахматной доски, могут даже отчасти вылезать за пределы своего квадрата, но это никак не влияет на ходы, которые можно делать фигурами.

Утверждения об абсолютно точном равенстве отрезков, углов и т. п. это просто некоторые состояния системы «геометрический язык». Так как эта система дискретна и детерминированна — при условии соблюдения правил логического вывода, то, если из условий задачи следует, что AB = BC, мы неизменно будем получать этот результат, сколько бы раз ни повторяли доказательство (предполагается, конечно, что система аксиом не противоречива — только такие системы имеют право на существование в математике).
Поскольку условие задачи уже формулируется на геометрическом языке, весь путь от условия к результату есть синтаксическое преобразование L1 > L2 внутри дискретной языковой системы. Совсем другой статус имеют утверждения эмпирического языка. Сам по себе этот язык, конечно, тоже дискретен, но эмпирические утверждения отражают семантические преобразования L1 > S1 выводящие нас в область неязыковой действительности, которая не является ни дискретной, ни детерминированной. Когда мы говорим, что два стержня имеют равную длину, это означает, что процесс их измерения будет всякий раз давать одинаковый результат. Однако из опыта известно, что, имея возможность неограниченно повышать точность измерения, мы рано или поздно обязательно получим разнящиеся значения длины, поэтому эмпирическое утверждение об абсолютно точном равенстве вообще лишено смысла. Другие утверждения эмпирического языка, которые имеют смысл и могут быть выражены на языке исчисления предикатов, например «стержень номер 1 меньше, чем стержень номер 2», обладают той же «абсолютной точностью», являющейся тривиальным следствием дискретности языка, что и математические утверждения о равенстве отрезков: это утверждение либо «в точности» истинно, либо «в точности» ложно. Однако из-за вариаций процесса измерения ни то, ни другое не является абсолютно достоверным.


Трактат Бурбаки


В заключение этой главы нельзя не сказать хотя бы несколько слов о многотомном трактате И.Бурбаки «Элементы математики». Никола Бурбаки — коллективный псевдоним, за которым скрывается группа видных математиков, главным образом французских, сложившаяся в 30-х годах нашего столетия. Начало выпуску в свет «Элементов математики» было положено в 1939 г.

Объединение специалистов в различных областях математики в группу Бурбаки произошло на базе концепции математики как формализованного языка. Цель трактата — изложить с этой точки зрения все важнейшие достижения математики, представить математику как единый формализованный язык. И хотя трактат Бурбаки по разным поводам подвергается критике со стороны некоторых математиков, он, несомненно, является важной вехой развития математики по пути ее само осознания.

Популярно концепция Бурбаки изложена в статье «Архитектура математики». Не превращается ли математика в Вавилонскую башню, в скопление изолированных дисциплин — спрашивает автор в начале статьи. Имеем ли мы дело с одной математикой или с несколькими математиками? Ответ на этот вопрос дается такой. Современная аксиоматическая математика — единственный формализованный язык, выражающий абстрактные математические структуры, которые представляют собой не отдельные независимые объекты, а образуют иерархическую систему. Под структурой Бурбаки понимает некоторое число отношений между объектами, обладающих определенными свойствами. Оставляя объекты полностью неопределенными, и формулируя свойства отношений в виде аксиом, а затем, извлекая из них следствия по правилам логического вывода, мы получаем аксиоматическую теорию данной структуры. В переводе на наш язык, структура — это семантика математической модели. Из числа структур можно выделить несколько типов фундаментальных порождающих структур. К ним относятся алгебраические структуры (отражающие свойства композиции объектов), структуры порядка, топологические структуры (свойства, связанные с понятиями окрестности, предела, непрерывности).
Кроме наиболее обшей структуры данного типа, т. е. структуры с наименьшим числом аксиом, в каждом типе порождающих структур мы находим структуры, полученные путем включения дополнительных аксиом. Так, в теорию групп входит теория конечных групп, теория абелевых групп, теория конечных абелевых групп. Комбинация порождающих структур дает сложные структуры, как, например, топологическая алгебра. Таким образом, возникает иерархия структур.

Как же используется аксиоматический метод в математическом творчестве? Именно здесь, пишет Бурбаки, аксиоматика больше всего сближается с экспериментальным методом. Следуя Декарту, она «разделяет трудности, чтобы лучше их разрешить». В доказательствах сложной теории она стремится разъединить главные пружины фигурирующих там рассуждений и, взяв их по отдельности, вывести из них следствия (расщепление моделей или структур, о котором мы говорили выше); затем, возвращаясь к исходной теории, она снова комбинирует предварительно выделенные структуры и изучает, как они взаимодействуют между собой.

1 Энгельс Ф. Диалектика природы. М.: Госполитиздат, 1955. С.165.

2 Бурбаки Н. Элементы математики // Очерки по истории математики. М.: Изд-во Иностр. Лит., 1963. С.15.

3 Это мнение и приведенные выше цитаты взяты из книги: Вейль Г. О философии математики. М.;Л., 1934.


Упадок греческой математики


Б. Ван дер Варден пишет2:

После Аполлония греческая геометрия сразу кончается. Правда, были еще эпигоны, вроде Диокла и Зенодора, которые время от времени решали некоторые задачи, оставшиеся им от Архимеда и Аполлония, словно крохи от пира великих. Писались еще, правда, произведения типа сборников вроде сочинения Паппа Александрийского (300 г.); математика еще применялась для практических или астрономических задач, причем разрабатывалась плоская и сферическая тригонометрия. Но, кроме тригонометрии, ничего значительного, ничего нового уже не появлялось. Геометрия конических сечений дожила до Декарта в той форме, какую придал ей Аполлоний; произведения Аполлония читались очень мало, а частью были также утрачены. «Метод» Архимеда также был потерян из вида, и проблема интегрирования оставалась без движения, пока за нее не взялись снова в XVII в. ...

Упадок греческой математики частично был вызван причинами внешнего порядка — политическими бурями, охватившими Средиземноморскую цивилизацию. Однако решающее значение имели все же внутренние причины. В астрономии, замечает Ван дер Варден, развитие шло все время по восходящей линии; тут бывали короткие и длинные остановки, но после их окончания работа возобновлялась с того места, где она остановилась. В геометрии же имел место явный регресс. Причина кроется, конечно, в отсутствии алгебраического языка. У Ван дер Вардена мы читаем:

Уравнения первой и второй степени можно было хорошо передать на языке геометрической алгебры; в крайнем случае, это было возможно для уравнений третьей степени. Но пойти дальше можно было, только пользуясь громоздкими и утомительными средствами пропорций.

Гиппократ, например, приводил кубические уравнения x3 = V к пропорции

a : х = х : у = у : b,

а Архимед писал уравнение третьей степени

х2(a - х) = bс2

в виде пропорции

(a - x) : b = c2 : x2.

Этим путем еще можно добраться до уравнений четвертой степени; примеры этого, пожалуй, можно найти и у Аполлония. Однако дальше пойти нельзя; больше того, чтобы получать результаты этим в высшей степени сложным методом, нужно было еще обладать математическим гением и быть весьма искушенным по части преобразования пропорций при помощи геометрических фигур.
Нашими алгебраическими обозначениями может пользоваться каждый инженер или естествоиспытатель, а греческой теорией пропорций и геометрической алгеброй —только очень одаренный математик.

К этому присоединяется еще другое обстоятельство, а именно трудность письменной передачи.

Чтение доказательств у Аполлония требует долгого и напряженного размышления. Вместо удобной алгебраической формулы стоит длинная фраза, где каждый отрезок обозначается двумя буквами, которые всякий раз еще нужно отыскивать на чертеже. Чтобы понять ход мыслей, приходится заменять эти фразы современными сжатыми формулами...

При устном объяснении на отрезки можно указывать пальцем, можно делать ударение на особенно важных местах и, кроме того, можно рассказать, каким образом получилось доказательство. Все это отпадает в письменной формулировке строго классического стиля: доказательства закончены, логически обоснованы, но они ничего не подсказывают. Не можешь ничего возразить, чувствуешь, что попался в логическую мышеловку, но не видишь, какая основная линия рассуждений за этим скрывается.

Таким образом, пока еще традиция не прерывалась, пока каждое поколение могло передавать свою методику следующему, все шло хорошо и наука процветала. Но как только по ряду причин внешнего характера устная передача прерывалась, и оставались только одни книги, понимать труды великих предшественников становилось крайне трудно, а выйти за их пределы и двинуться вперед — почти невозможно.

Почему же греки, несмотря на их высокую математическую культуру и обилие одаренных математиков, так и не смогли создать алгебраического языка? Обычный ответ на этот вопрос таков, что этому помешала именно их высокая математическая культура, конкретнее — высокий уровень требований к логической строгости теории, ибо иррациональные числа, которыми, как правило, выражаются значения геометрических величин, греки не могли рассматривать как числа; если отрезки были несоизмеримы, то считалось, что числового отношения для них просто не существует.


Это объяснение, хотя оно и верно в общих чертах, следует вместе с тем признать неточным и поверхностным. Стремление к логической строгости не может быть само по себе отрицательным фактором в развитии математики. Если оно выступает в качестве отрицательного фактора, то, очевидно, лишь в комбинации с какими-то другими факторами и вряд ли следует решающую роль в этой комбинации приписывать именно стремлению к строгости. Совершенная логическая строгость в окончательных формулировках и доказательствах не мешала Архимеду пользоваться нестрогими наводящими соображениями. Почему же она помешала созданию алгебраического языка? Здесь дело, конечно, не просто в высоком стандарте логической строгости, а во всем строе мышления, в философии математики. Декарт, создав современный алгебраический язык, вышел за рамки греческого канона, но это вовсе не значит, что он погрешил против законов логики или пренебрегал доказательствами. И иррациональные числа он мыслил как «точные», а вовсе не как замененные на свои приближенные значения. Некоторые неполадки с логикой начались уже после Декарта, в эпоху бурного развития анализа бесконечно малых. Тогда математики были так увлечены потоком открытий, что им просто было не до логических тонкостей. В XIX в. появилось время подумать, и под анализ была подведена более прочная логическая основа.

Причины ограниченности греческой математики мы уясним себе после того, как разберем сущность переворота в математике, произведенного Декартом.


Управление ассоциированием


Мы подошли к самому волнующему моменту в истории жизни на Земле — появлению мыслящего существа, человека. Логика нашего повествования побуждает нас связать возникновение мышления с очередным метасистемным переходом. В настоящее время мы еще так мало знаем о процессе мышления и о структуре мыслящего мозга, что всякую теорию, претендующую на объяснение этого явления в целом, надо рассматривать как гипотетическую. Следовательно, и к нашей концепции мышления надо относиться как к гипотезе. Однако эта концепция указывает место мышления в ряду естественных явлений и, как мы увидим, приводит в систему обширное множество фактов. В ее пользу говорит также полное отсутствие произвольных допущений частного характера, которое обычно приходится делать, когда теория включает структурное описание мало изученного объекта. Ядром нашей концепции является не какая-либо гипотеза о конкретной структуре и механизме работы мозга, а выбор таких функциональных понятий, через которые становится возможным последовательное и достаточно убедительное объяснение фактов, относящихся к мышлению.

Итак, мы утверждаем, что появление мыслящих существ, знаменующее начало нового этапа эволюции и даже новой эры — Эры Разума, есть не что иное, как очередной метасистемный переход, происходящий по формуле

Управление ассоциированием = Мышление.

Чтобы доказать это утверждение, мы будем анализировать следствия, вытекающие из управления ассоциированием, и отождествлять эти следствия с теми формами поведения, которые мы наблюдаем у мыслящих существ.

Прежде всего, что такое управление ассоциированием? Представления Х и Y ассоциируются у животного только в том случае, когда они совместно появляются в его опыте. Если не будет их совместного (как правило, многократного) появления, то не возникает и ассоциации. Животное не вольно управлять своими ассоциациями. Оно имеет только те ассоциации, которые ей навязывает среда. Управление ассоциированием означает наличие в мозгу механизма, позволяющего ассоциировать любые два или несколько представлений, которые вовсе не имеют тенденции встречаться в опыте совместно.
Иначе говоря, это произвольное, не навязанное внешней средой ассоциирование.

Казалось бы, эта акция совершенно бессмысленна. В огороде бузина, а в Киеве дядька — к чему связывать эти два факта, которые на самом деле никак не связаны между собой?

Тем не менее, произвольное ассоциирование имеет глубокий смысл. Оно действительно было бы бессмысленным, если деятельность мозга сводилась бы к пассивному восприятию впечатлений, их сортировке, компоновке и т. п. Но у него есть и другая задача, кстати основная, — управлять организмом, осуществлять активное поведение, которое меняет окружающую среду, создает новый опыт. Можно побиться об заклад, что будильник и подставка для чайника никак не ассоциируются в вашем сознании. И в сознании вашего трехлетнего сына тоже. Но, впрочем, только до поры до времени. В один прекрасный момент в голове юного гражданина почему-то возникает ассоциация между двумя этими предметами и им овладевает непреодолимое желание постучать подставкой по будильнику. В результате предметы приходят в состояние реального, физического взаимодействия.

При метасистемном переходе то, что раньше было зафиксированным и однозначно определенным внешними условиями, становится изменяемым, подверженным действию метода проб и ошибок. Управление ассоциированием — это, как и всякий метасистемный переход, в высшей степени революционный шаг, направленный против рабского послушания организма диктатуре внешней среды. Как всегда в методе проб и ошибок, только какая-то небольшая часть произвольных ассоциаций оказывается полезной и закрепляется, но это такие ассоциации, которые не могли бы возникнуть непосредственно под влиянием внешней среды. Они-то и обеспечивают разумному существу такие формы поведения, которые недоступны животному, застывшему на предыдущем этапе.


Управление рефлексом


Сколь бы ни была совершенна нервная сеть, построенная по принципу сложного рефлекса, она обладает одним существенным недостатком: неизменностью функционирования во времени. Животное с такой нервной системой ничего не может извлечь из своего опыта, его реакции всегда будут одинаковыми, его действия всегда будут совершаться по одним и тем же планам. Чтобы животное могло обучаться, его нервная система должна содержать какие-то вариабельные компоненты, которые обеспечивали бы изменение связей между ситуациями и действиями. Эти компоненты, следовательно, будут осуществлять управление рефлексами. Хорошо известно, что животные обладают способностью к обучению и выработке новых рефлексов. По терминологии, введенной Павловым, врожденный рефлекс, заложенный в нервную систему природой, называется безусловным рефлексом, а рефлекс, выработанный под действием внешней среды, — условным рефлексом. Когда мы говорим о сложном рефлексе, мы имеем в виду, конечно, безусловный сложный рефлекс. Наличие компонентов, управляющих сложными рефлексами, проявляется в опытах по обучению животных как способность к образованию условных рефлексов.

Однако мы не можем отождествить понятие условного рефлекса с понятием управления рефлексом. Последнее понятие шире. Ведь наше понятие сложного рефлекса, взятое в контексте описания общих принципов эволюции нервной системы, означает по существу любую фиксированную связь между состояниями классификаторов, фиксаторов представлений и эффекторов. Следовательно, управление рефлексами надо понимать как создание под действием индивидуального опыта любых переменных связей между этими объектами. Такие связи называют ассоциациями представлений или просто ассоциациями. Термин «представление» понимается здесь в широком смысле — как состояние любых подсистем мозга, в частности классификаторов и эффекторов. Образование ассоциаций мы будем называть ассоциированием (терминология тяжеловатая, зато точная). Итак, пятый этап эволюции — этап ассоциаций. Формула метасистемного перехода на этом этапе:

Управление рефлексами = Ассоциирование.



Условный рефлекс и обучение


Однако возвратимся от врожденных ассоциаций к вырабатываемым, т. е. собственно к ассоциированию представлений. В различии между суффиксами этих однокоренных слов — вся суть метасистемного перехода от четвертого к пятому этапу эволюции. Ассоциация - это просто один из аспектов сложного рефлекса, ассоциирование — это управление ассоциациями: образование новых ассоциаций и исчезновение старых.

Наиболее полно способность к ассоциированию представлений проявляется как способность к образованию (и, следовательно, распознаванию) новых понятий. Примером может служить собака, издалека узнающая своего хозяина.

Рис. 3.7. Схема условного рефлекса

Павловский условный рефлекс является более частным проявлением способности к ассоциированию. Его схема изображена на рис. 3.7. Безусловный раздражитель S1 (еда) всегда сопровождается условным раздражителем S2 (свисток), в результате они ассоциируются в одно представление U, которое вследствие наличия в нем S1 вызывает реакцию R (отделение слюны). Тогда раздражитель S2 даже при отсутствии S1 вызывает U и, следовательно, R. Свисток вызывает отделение слюны.

Может возникнуть следующий вопрос. Условный рефлекс возникает на основе безусловного, схема которого есть S > R. В то же время если на рис. 3.7 убрать условный раздражитель, то мы получим схему S1 > U > R. Откуда мы знаем, что существует ступень U? Не является ли это произвольной гипотезой?

В действительности схема на рис. 3.7 не содержит абсолютно никаких гипотез. Подчеркнем еще раз, что эта схема функциональная, а не структурная. Мы не делаем никаких предположений об устройстве нервной сети, а только описываем наблюдаемые факты. А эти факты таковы: во-первых, состояние S1 через посредство каких-то промежуточных состояний приводит к состоянию R, во-вторых, состояние S2 также, в конечном счете, приводит к R. Следовательно, в какой-то момент эти два процесса соединяются. Состояние в этот момент мы обозначаем через U и получаем схему, о которой идет речь.

Этим наша схема и наш подход вообще отличаются от павловской схемы рефлекторной дуги, которая как раз и является структурной схемой, физиологической моделью высшей нервной деятельности.


Процесс обучения, если он не сводится к выработке нескольких условных рефлексов (т. е. затрагивает только распознавательную иерархию), включает в себя еще элемент научения — выработки умения, навыка.

Процесс научения также укладывается в схему ассоциирования представлений при том общем смысле, который мы придаем этому понятию. Ведь научение — это выработка и закрепление детального плана для достижения цели, нового плана, которого раньше не было. План можно представить как организованную совокупность ассоциаций. Вспомним схему регулирования (см. рис. 2.6). Блок сравнения должен при фиксированной цели сопоставить каждой ситуации определенное действие. «Необученный» блок сравнения будет пробовать всевозможные действия и останавливаться на тех из них, которые приводят к уменьшению расхождения между ситуацией и целью (метод проб и ошибок). В результате обучения устанавливается связь между ситуацией и соответствующим действием (которое ведь тоже есть представление), так что обученный блок сравнения выполняет нужное действие быстро и безошибочно.

Несколько слов об инстинкте и о соотношении между инстинктивным поведением и поведением, выработанным путем обучения. Что такое инстинкт? Очевидно, это нечто, передающееся по наследству, но что именно? Миллер, Галантер и Прибрам в книге, на которую уже ссылались, определяют инстинкт как «наследственный неизменяемый непроизвольный план». Планы, как мы знаем, устроены по иерархическому принципу. Теоретически можно допустить существование инстинкта, распространяющегося на все этажи иерархии, включающего и общую стратегию, и частные тактические приемы вплоть до сокращения отдельных мышц. «Но если такой инстинкт существует, — пишут указанные авторы, — то мы никогда о нем не слышали». Инстинкт всегда сохраняет определенную высоту положения в иерархии поведения, предоставляя животному встраивать недостающие компоненты низких уровней путем обучения. Волчонок, пытающийся схватить убегающее животное, действует, несомненно, под влиянием инстинкта.Но одно дело пытаться, другое дело уметь это сделать. «Можно считать,— пишут Миллер, Галантер и Прибрам, — что у крыс копуляция является инстинктивной формой поведения. В известных отношениях так оно и есть. Однако грубость копулятивного поведения крысы, которая не имеет опыта в области ухаживания, отчетливо показывает, что известная практика в этих инстинктивных реакциях является необходимой».

По мере усложнения организации животного и возрастания его обучаемости в процессе эволюции инстинкты «отступают вверх», становясь все более абстрактными и оставляя все больше пространства для их реализации. От этого поведение животного становится все более гибким и оперативно меняющимся при изменении внешних условий. Шансы вида на выживание увеличиваются.


В поисках аксиом


Для понимания природы математической достоверности очень поучительно довести до конца разбор утверждения E1. Поскольку у нас все-таки остались некоторые сомнения относительно абсолютной необходимости пересечения окружности на рис. 10.3, попробуем представить себе ситуацию, когда они не пересекаются. Полная неудача этой попытки будет означать, что утверждение E1 математически достоверно и не может быть разложено на более простые утверждения; тогда его следует принять в качестве аксиомы. Если же нам ценой большего или меньшего насилия над воображением удастся представить себе ситуацию, в которой ?A и ?B не пересекаются, эта ситуация, надо полагать, придет в противоречие с какими-то более простыми и глубокими утверждениями, обладающими математической достоверностью; тогда мы их и примем за аксиомы, а наличие противоречия будет служить доказательством E1. Таков обычный путь к установлению аксиом в математике.

Проведем сначала окружность ?A. Затем поставим опорную ножку циркуля в точку B, а пишущую — в точку A и начнем проводить окружность ?B. Мы движемся от центра окружности ?A к ее периферии и в некоторый момент (так мы представляем это в своем воображении) должны либо пересечь окружность ?A, либо как-то перескочить через нее, разорвав для этого окружность ?A и ?B (рис. 10.4). Но окружность ?A мы воображаем как непрерывную линию и нам становится ясно, что свойства непрерывности, являющиеся более фундаментальными и общими, чем другие особенности данной задачи, лежат в основе нашей уверенности в пересечении окружностей ?A и ?B. Поэтому поставим перед собой цель доказать утверждение e1 исходя из свойств непрерывности окружности. Нам понадобятся при этом некоторые соображения, связанные с порядком расположения точек на прямой. Понятие непрерывности и порядка мы включаем в число основных неопределяемых понятий геометрии, подобно понятиям точки, прямой, расстояния и т. д.

Рис. 10.4. «Перескакивающие» окружности

Вот один из возможных путей к цели.

Введем понятие «внутри» (применительно к окружности) с помощью следующего определения:


O1: Говорят, что точка A лежит внутри окружности ?, если она не лежит на ? и любая прямая, проходящая через точку A, пересекает ? двух точках, причем таким образом, что точка A лежит между точками пересечения. Если точка лежит не на окружности и не внутри нее, то говорят, что она лежит вне окружности. Понятие «между» характеризует порядок расположения трех точек на прямой. Можно принять его за основное, а можно выразить через более общее понятие «порядок» путем следующего определения:

O2: Говорят, что точка A находится между точками B1 и B2, если эти три точки расположены на одной прямой и при движении по ней встречаются в порядке B1, A, B2 или B2, A, B1

Примем в качестве аксиом следующие положения:

A1: Центр окружности лежит внутри нее.

A2: Дуга окружности, соединяющая любые ее точки, непрерывна.

A3: Если точка A лежит внутри окружности ?, а точка B - вне окружности и эти две точки соединяет непрерывная линия, то существует точка пересечения этой линии с окружностью.

Опираясь на эти аксиомы, приступаем к доказательству. Окружность ?B по условию задачи проходит через центр A окружности ?A. Если у нас будет уверенность, что существует хотя бы одна точка окружности ?B, не лежащая внутри ?A, то мы докажем E1. Действительно, если она лежит на ?A, то E1 уже имеет место. Если она лежит вне ?A, то дуга окружности ?B соединяет ее с центром, т. е. с внутренней точкой окружности ?A. Следовательно, по аксиомам A2 и A3 существует точка пересечения ?A и ?B.

Но можем ли мы быть уверены, что существует точка на окружности ?B, находящаяся вне ?A? Попытаемся вообразить противоположный случай. Он представлен на рис. 10.5. Это вторая попытка вообразить ситуацию, противоречащую доказываемому утверждению. Если первая попытка немедленно вступила в явное противоречие с непрерывностью окружности, то вторая оказалась более успешной. В самом деле, мы с некоторой натяжкой можем представить, что так получится. Берем циркуль, острие его ставим в точку B, карандаш — в точку A.


Начинаем проводить окружность, не отрывая карандаша от бумаги, а когда карандаш возвращается на уже начерченную линию, снимаем

циркуль и видим, что получился рис. 10.5. А почему бы и нет?



Рис. 10.5. Окружность ?B внутри ?A



Рис. 10.6. К доказательству теоремы T1

Чтобы доказать, что это невозможно, надо доказать, что в этом случае центр окружности ?B обязательно окажется вне ее. Нам поможет в этом следующая теорема:

T1: Если окружность ?1 лежит целиком внутри окружности ?2, то каждая внутренняя точка окружности ?1 является также внутренней точкой окружности ?2.

Для ее доказательства выберем произвольную внутреннюю точку A окружности ?1 (рис. 10.6). Проведем через нее прямую. По определению O1 она пересечет ?1 в двух точках: B1 и B2. Так как B1 (как и B2) лежит внутри ?2, эта прямая пересечет также ?2 в двух точках: C1 и C2. Мы получили пять точек на прямой, связанных следующими отношениями порядка: A лежит между B1 и B2; B1 и B2 лежат между C1 и C2. Тот факт, что в этой ситуации точка A оказывается между точками C1 и C2 представляется нам столь очевидным и первичным, что мы смело формулируем его как еще одну аксиому.

A4: Если на одной прямой обе точки B1 и B2 лежат между точками C1 и C2, то и любая точка A, лежащая между B1 и B2, лежит также между C1 и C2.

Поскольку в качестве A мы можем взять любую точку внутри ?1 и провести через нее любую прямую, теорема T1 доказана.

Теперь легко закончить доказательство E1. Если окружность ?B лежит целиком внутри ?A, то по теореме T1 и центр ее B должен лежать внутри ?B. Однако по условию задачи точка B находится на ?A. Следовательно, ?B содержит хотя бы одну точку, не являющуюся внутренней к ?A.

Итак, чтобы доказать одно утверждение E1 нам понадобилось целых четыре утверждения A1A4, но зато эти утверждения выражают чрезвычайно глубокие и общие модели действительности, связанные с понятиями непрерывности и порядка. Мы не можем даже представить себе, чтобы они были ложными. Некоторые претензии можно предъявить разве только к аксиоме A1, которая связывает понятие центра, имеющее метрическую природу (т.


е. включающее понятие измерения), с понятием «внутри», опирающимся исключительно на понятия непрерывности и порядка. Можно пожелать, чтобы эта связь была осуществлена с помощью более простых геометрических объектов в более легких условиях для работы воображения. Пожелание это легко выполнимо. Заменим аксиому A1 следующей аксиомой

A'1 : Если на прямой дана точка A и некоторое расстояние (отрезок) Р, то существует ровно две точки на прямой, расположенные на расстоянии Р от точки A, причем точка A лежит между этими двумя точками.

Опираясь на эту аксиому, докажем утверждение A1 как теорему. Проведем через центр окружности произвольную прямую. По аксиоме A'1, на ней будут две точки, расположенные на расстоянии R (радиус окружности) от центра. Так как окружность определяется как множество точек, находящихся на расстоянии R от центра, эти точки принадлежат окружности. По аксиоме A'1 точка центра лежит между ними и, следовательно, по определению O1 является внутренней точкой. Таким образом, аксиома A1 сведена к аксиоме A'1. Попробуйте теперь вообразить точку на прямой, которая не имеет двух точек, расположенных от нее по разные стороны на заданном расстоянии!


Век металла


Век металла — следующая за неолитом страница истории человеческой культуры. Переход к выплавке металла знаменует собой метасистемный переход в системе производства. Если раньше материал, из которого делается орудие, — дерево, камень, кость и т. п. — являлся чем-то данным, готовым, то теперь возникает процесс — выплавка металла, направленный не на изготовление орудия, а на изготовление материала для орудия. Благодаря этому люди получают новые материалы с нужными для них свойствами, которых нет в природе. Сначала это бронза, затем железо, различные сорта стали, стекло, бумага, резина. С точки зрения структуры производства век металла следовало бы назвать веком материала. Такие ремесла, как выделка кожи и гончарство, возникшие раньше выплавки металлов, нужно рассматривать, строго говоря, как начало метасистемного перехода к веку материала. Однако в каждом метасистемном переходе есть решающая фаза, когда преимущества создания нового уровня в системе становятся очевидными и бесспорными. Для века материала такой фазой послужила выплавка металлов, особенно железа.

Древнейшие следы бронзы в Месопотамии и Египте относятся к IV тысячелетию до н. э. Начало выплавки рудного железа относят к 1300 г. до н. э.



Вера и знание


Когда мы говорим, что первобытный человек верит в существование духов и те или иные действия, мы предрасполагаем себя к неправильному пониманию его психологии. Говоря о вере, мы противопоставляем ее знанию. Но само различие между верой и знанием возникает лишь на уровне критического мышления и отражает различие в психологической достоверности представлений, вытекающее из различия их источников. Для первобытного человека нет различия между верой и знанием, и к своим представлениям он относится не так, как мы к своей вере, а как мы к своим знаниям. С точки зрения психологической первобытный человек знает, что существуют духи, знает, что заклинанием можно выгнать болезнь или нагнать ее, знает, что после смерти он будет жить в стране мертвых, и т. д. Поэтому мы избегаем называть воззрения первобытного человека первобытной религией: термины «первобытная философия» или «первобытная наука» имеют не меньше прав на существование. Различать эти виды деятельности можно лишь на уровне критического мышления. Это относится как к различию между верой и знанием, так и к различию между «потусторонним» и «посюсторонним». Тот факт, что в представлениях первобытных людей фигурируют духи, призраки, тени умерших и прочая чертовщина, еще не делает эти представления религиозными, ибо все это воспринимается как нечто вполне посюстороннее и такое же реальное (материальное, если угодно), как звери, ветер, солнечный свет. Л. Леви-Брюль, определяющий психологическую деятельность первобытного человека как мистическую, подчеркивает, тем не менее, что это совсем не то же самое, что мистицизм в современном смысле слова. «За неимением лучшего, — пишет он, — я буду употреблять этот термин не в силу его связи с религиозным мистицизмом наших обществ, который является чем-то в достаточной мере иным, а потому что в самом узком смысле термин «мистический» подходит к вере в силы, влияния, действия, неприметные, неощутимые для чувств, но, тем не менее, реальные». Многих наблюдателей поражает, до какой степени реальными представляются первобытным народам тени и духи их предков. Р. Кодрингтон пишет о меланезийцах: «Когда туземец говорит, что он человек, то он дает понять, что он — человек, а не дух. Отнюдь не следует понимать, что он — человек, а не животное. Разумные существа в мире делятся в его глазах на две категории: на людей, которые живы, и на людей, которые умерли, у племени моту — на та-мур и та-мате. Когда меланезийцы впервые видят белых людей, они принимают их за та-мате, т. е. духов, вернувшихся к жизни, а когда белые спрашивают у туземцев, кто они такие, то последние называют себя та-мур, т. е. людьми, а не духами». У чиригуанов (Южная Америка) два человека, встретившись, обмениваются следующим приветствием: «Ты живой?» — «Да, я живой». Некоторые другие племена Южной Америки здороваются подобным же образом.



Верхний палеолит


На рубеже между нижним и верхним палеолитом (приблизительно 40 тыс. лет назад) процесс становления человека завершается. Человек верхнего палеолита — это биологически вполне современный человек: homo sapiens. С этого момента всю свою «эволюционную энергию» природа будет вкладывать не в биологию человеческой особи, а в культуру человеческого общества.

В верхнем палеолите различают три культуры: ориньякскую, солютрейскую и мадленскую. Первые две близки между собой, и их объединяют в одну культурную эпоху: ориньяко-солютрейскую. Начало этой эпохи совпадает по времени с концом мустьерской эпохи. Найдено несколько стоянок, на которых встречаются кости как неандертальцев, так и людей современного типа. Отсюда следует, что последнее эволюционное изменение, завершившее формирование человека, было весьма существенным, и новые люди быстро вытеснили неандертальцев.

Техника обработки камня сильно продвинулась вперед в ориньяко-солютрейскую эпоху по сравнению с мустьерской эпохой. Мы встречаем здесь разнообразные орудия и оружие: ножик, копье, дротик, резцы, скребки, шило. Широко используются кость и рог. Возникает шитье, о чем свидетельствуют находки иголок. В одном из памятников солютрейской культуры найден футляр из птичьей кости, содержащий целый набор костяных игл. Там же был найден и костяной рыболовный крючок. В мадленскую эпоху (около 15 тыс. лет назад) уже появляются копьеметалка и гарпун. Замечательным отличием верхнего палеолита от нижнего является возникновение изобразительного искусства. В ориньяко-солютрейскую эпоху появляется наскальная живопись, в мадленскую эпоху она достигает расцвета. Обнаружено большое число изображений (главным образом животных), которые поражают и современного зрителя своей выразительностью, лаконичностью и точностью передачи натуры. Появляются также скульптурные изображения и предметы, служащие для украшения. В вопросе о происхождении искусства есть две точки зрения: первая выводит искусство из магических обрядов, вторая — из эстетических и познавательных целей.
Однако если учесть характер первобытного мышления (о чем мы подробно будем говорить ниже), то различие между этими двумя источниками оказывается несущественным.

С точки зрения на материальное производство как на систему, решающим отличием верхнего палеолита от нижнего является появление составных орудий, например копья с каменным наконечником. Это можно рассматривать как метасистемный переход, ибо изготовление составного орудия (оружия) есть создание системы из подсистем, которые до сих пор мыслились изготовителем как нечто самостоятельное (наконечник — колющее каменное орудие, бревно — палка или деревянное копье). Что это не такой простой переход, можно видеть из того факта, что в историческое время существовал народ — коренные жители острова Тасмании, который не знал составных орудий.

Сейчас тасманийцев как этнической группы не существует. Последняя чистокровная тасманийка умерла в 1877 г. Сведения, сохранившиеся о культуре тасманийцев, недостаточны и иногда противоречивы. Тем не менее, их с уверенностью можно считать самой отсталой группой человечества из всех известных этнографии. Здесь сыграла роль их изолированность от остальной части человечества (ближайшие соседи тасманийцев — австралийские аборигены были почти столь же отсталыми) и бедная природа острова, в частности отсутствие животных, крупнее кенгуру. С учетом различий в природных условиях культуру тасманийцев можно сопоставить с ориньяко-солютрейской культурой на ее ранних стадиях. Тасманийцы имели следующие орудия и оружие: каменное ручное рубило, остроконечник, режущее каменное орудие неопределенной формы, деревянную дубину (двух типов: ручную и метательную), деревянное копье, палку для выкапывания съедобных корней и деревянную лопатку для отрывания моллюсков от скал. Кроме того, они умели плести веревки и сумки (корзины) из травы или волоса. Огонь добывали с помощью трения. Изготовлять составных орудий, например придавать рабочей каменной части рукоятку из дерева, они, повторяем, не умели.


Внутренний учитель


Отнюдь не каждую операцию, которую совершает человек, он совершает «на личном воображении», т. е. как будто впервые открывая ее для себя. Напротив, большую часть операций человек (во всяком случае, взрослый) делает без участия воображения как нечто рутинное, привычное, регулируемое уже сложившимися ассоциациями. Механизм таких операций не отличается от того, что мы наблюдаем у животных. И способ, которым необходимые ассоциации были выработаны, мы называем, как у животных, обучением. Но механизм обучения у людей и у животных радикальнейшим образом различается.

У животных новые ассоциации образуются в некотором смысле насильно, извне. Чтобы образовалась ассоциация, она должна быть мотивационно обоснована, связана с отрицательной или положительной эмоцией. Необходимо подкрепление. Иначе говоря, обучение происходит только «методом кнута и пряника». Когда обучается человек, он сам идет навстречу обучению. Не потому, что он знает, что «учиться полезно». Ребенок этого не знает, но обучается наиболее легко и активно. Ассоциации образуются у него «просто так», без всякого подкрепления. Это работает механизм управления ассоциированием, который требует себе пищи. Если ее нет, человеку становится скучно, а это отрицательная эмоция. Учителю нет надобности навязывать что-либо ребенку или человеку вообще, его задача лишь в том, чтобы дать пищу его воображению. Получая эту пищу, человек испытывает удовольствие. Таким образом, он всегда учится сам, изнутри. Это активный, творческий процесс. Благодаря метасистемному переходу человек приобрел собственного внутреннего учителя, который непрерывно учит его, щелкая внутренним кнутом и заманивая внутренним пряником.

«Внутренний учитель» — не маньяк, он подходит реалистически к возможностям ученика. Отнюдь не все представления, совпадающие или близкие по времени, образуют устойчивые ассоциации. Если бы это было так, то это означало бы наличие абсолютной памяти, т. е. возможность вспомнить каждый эпизод своей жизни. Мы знаем, почему такой способности нет.
Можно сделать предположение, что для этого просто не хватает информационной емкости мозга. Однако существование людей, чьи способности к запоминанию несравненно больше, чем у обычных людей, по-видимому, противоречит этой гипотезе и склоняет к выводу, что дело скорее в каких-то деталях устройства управления ассоциированием. Так или иначе, но раз абсолютной памяти нет, необходим критерий для отбора ассоциаций. Один из критериев у человека такой же, как у животных, — эмоциональная нагрузка. Мы в первую очередь запоминаем то, что связано с эмоциями. Однако у человека есть и другой критерий (который, кстати, свидетельствует о наличии управления ассоциированием): мы можем решить запомнить что-либо и в результате действительно это запомнить. Наконец, третий и самый значительный критерий — это критерий новизны. Известно, что человек запоминает новое для него и равнодушно пропускает старое («в одно ухо вошло — в другое вышло»). Но чем отличается «новое» от «старого»? Ведь никакие впечатления не повторяются, строго говоря, дважды. В этом смысле каждое впечатление — новое. Между тем, когда мы слышим рассуждения на избитую тему или видим на экране избитые ситуации, мы начинаем зевать и досадливо машем рукой: «Это уже было!» Когда поток впечатлений укладывается в уже существующие модели, наш «внутренний учитель» не видит необходимости менять модель и впечатления проскальзывают без всяких последствий. Это тот случай, когда мы наперед знаем, что будет дальше. Когда же опыт таков, что мы не знаем, что будет дальше, или тем более если он противоречит модели, то появляются новые ассоциации — модель усложняется. Соотношение с уже существующей в мозгу моделью — вот критерий новизны впечатления.

Заговорив о памяти и других сторонах психики человека, мы затронули множество нерешенных проблем. К счастью, в нашу задачу не входит систематическое изложение психологии человека, тем более в ее «кибернетизированном» варианте. Мы удовлетворимся беглым обзором психических черт, отличающих человека от животного, чтобы убедиться, что они являются естественными следствиями метасистемного перехода — возникновения аппарата, управляющего ассоциированием.



Мы видели, что управление ассоциированием приводит к качественному отличию обучаемости человека от обучаемости животного. Заметим, кстати, что то огромное количественное различие, которое существует между обучаемостью человека и животного и выражается просто в количестве информации, запоминаемой в процессе обучения, также является прямым следствием метасистемного перехода. Оно вытекает из закона разрастания предпоследнего уровня, о котором мы упоминали в свое время. Предпоследний уровень в данном случае — это физические устройства для образования ассоциаций. Размножение этих устройств означает увеличение памяти. Отступая, в виде исключения, от своего принципа — не рассматривать структурных моделей мозга, мы укажем (рис. 4.1) на разрастание коры головного мозга у человека, которая согласно всеобщему (и хорошо обоснованному) мнению является хранилищем ассоциаций.



Рис. 4.1. Площадь поверхности коры головного мозга лошади, орангутанга и человека


Воля к бессмертию


Здесь на сцену выступает важнейший факт, касающийся человека, факт, осознание которого есть исходная точка очеловечивания: человек смертен. Мысль о неизбежности смерти создает для разумного существа мучительную ситуацию, из которой он ищет выхода. Протест против смерти, против распада своей личности присущ всем людям. Он-то и является, в конечном счете, тем источником, из которого черпают все этические учения необходимую им волевую компоненту.

Традиционные религиозные учения исходят из безусловной веры в бессмертие души. При этом протест против смерти используется как сила, заставляющая человека принять такое учение — ведь оно с самого начала обещает бессмертие. Если принять бессмертие души, то стимул для выполнения нравственных норм напрашивается сам собой: вечное блаженство за добро и вечные муки за зло. Под мощным воздействием науки представления о бессмертии души и загробной жизни, некогда совершенно конкретные и ясные, становятся все более абстрактными и бледными и старые религиозные системы медленно, но верно теряют свое влияние.

Человек, воспитанный на идеях современной науки, не может поверить в бессмертие души в традиционной религиозной формулировке, как бы ему этого ни хотелось; простейший лингвистический анализ показывает полную бессодержательность этого понятия. Воля к бессмертию в сочетании с нарисованной выше картиной мира может привести его лишь к одной цели — внести свой личный вклад в космическую эволюцию, увековечить свою личность во всех последующих актах мировой драмы. Этот вклад, чтобы быть вечным, должен быть конструктивным. Так мы приходим к принципу: Высшее Благо — конструктивный вклад в эволюцию Вселенной. Традиционные духовные и общественные ценности могут быть в своем главном выведены из этого принципа. В той степени, в которой они ему противоречат, они должны быть отброшены так же безжалостно, как безжалостно подавляем мы животные инстинкты во имя высших ценностей.

Человек каким-то образом продолжает жить в своих творениях:

Нет! Весь я не умру! Душа в заветной лире


Мой прах переживет и тленья убежит...

Что такое душа? В научном аспекте этого понятия — форма, или организация, движения материи. Так ли уж важно, воплощается ли эта организация в нервах и мускулах, или в камне, или в буквах, или в образе жизни потомков? Пытаясь докопаться до самой сердцевины своей личности, разве не приходим мы к убеждению, что не повторяющийся поток ощущений, не регулярное пережевывание пищи составляют ее сущность, но некоторые неповторимые, глубоко индивидуальные творческие акты? Но материальные результаты этих актов могут далеко выходить за пространственные и временные границы нашего биологического тела. Так мы начинаем ощущать глубокое единство с Космосом и ответственность за его судьбу. Это ощущение, вероятно, одинаково у всех людей, но выражается разными словами в разных религиозных и философских системах. Этому же чувству учит искусство, возвышая человека до уровня космического явления.

Итак, научное мировоззрение приводит к этике, которая указывает Высшие Ценности и требует от нас ответственности и активности в их достижении. Как и всякая этика, она включает волевой акт, который мы назвали волей к бессмертию. Если человек не может или не хочет совершить этого акта, то никакое знание, никакая логика не заставят его принять Высшие Ценности, сделаться ответственным и активным. И бог с ним! Обывателя, твердо решившего довольствоваться своим убогим идеалом, решившего жить смиренным рабом обстоятельств, не возродит ничто, и он бесследно сойдет со сцены. Кто не хочет бессмертия, тот и не получит его. Подобно тому, как животное, лишенное инстинкта размножения, не выполнит своей животной функции, человек, лишенный воли к бессмертию, не выполнит своей человеческой функции. К счастью, этот случай исключение, а не правило (если только оставить в стороне искусственную кастрацию). Воля к бессмертию — не привилегия отдельных «великих» людей, а массовое свойство человека, норма человеческой личности, служащая источником нравственной силы и мужества.

В какой степени этические идеалы, которые мы вывели из научного мировоззрения, окажутся убедительными и приемлемыми для широких кругов людей — наших современников и потомков? Не звучат ли все эти рассуждения уж как-то абстрактно, бесчувственно? Способны ли они увлечь, воздействовать на эмоции? Способны; это показывают многие примеры.


Идеи эволюции и личного участия в мировом космическом процессе овладевают воображением, придают жизни глубину и смысл. Но в обмен они требуют смелости в выводах, готовности жертвовать привычным и принять неожиданное и жутковатое, если к нему неумолимо приводит логика.

От тех, кто занимается наукой, естественно ожидать положительного отношения к построению этики научного мировоззрения. И эти ожидания в основном оправдываются. Много у ученых и «попутчиков». Но много и врагов или, по меньшей мере, недоброжелателей. В некоторых кругах (особенно среди гуманитарной интеллигенции) модно ругать ученых за «сциентизм» — стремление построить всю жизнь на научной основе, «подменив» наукой все остальные формы духовной жизни. Эти настроения (которые вряд ли можно признать оправданными) порождаются в основном страхом перед тем неизвестным будущим, к которому нас неудержимо (и стремительно!) влечет развитие науки. Страх усиливается из-за непонимания. Ибо ни широкая публика, ни представители гуманитарной и художественной интеллигенции, как правило, не понимают сущности современного научного мышления и роли науки в духовной культуре. Эта проблема была в чрезвычайно яркой форме поставлена Ч.П.Сноу (в 1956 г.) в его лекции «Две культуры»3.

Наука для современного человека — это то, чем был огонь для первобытного человека. И как огонь внушал нашим предкам целую гамму чувств — страх, удивление, благодарность, такую же гамму чувств вызывает и наука. Огонь обладает притягательной и завораживающей силой. Первобытный человек смотрел на огонь, и в его душе поднимались неведомые ранее восторги и смутные предчувствия. То же с наукой. Научная фантастика, например, — это уж точно не что иное, как видения первобытных, сидящих у костра. А построение высших целей и принципов на основе научной картины мира может быть названо огнепоклонством. Эти сравнения не унижают, а, напротив, делают честь современным огнепоклонникам. Ведь мы столь многим обязаны воображению наших предков, завороженных пляшущим пламенем костра.


Воображение, планирование, преодоление инстинкта


Если в мозгу животного существует ассоциация между предметом Х — орудием и предметом Y — объектом действия (и, конечно, физическая возможность выполнить действие), то оно окажется способным применить орудие. Если же такой ассоциации нет, то животное «не догадается» сделать это. Собаку можно обучить подтаскивать зубами скамейку Х к забору Y, забираться на скамейку и перепрыгивать с нее через забор, который иначе она преодолеть не может. Но если она не обучена этому, то своим умом ей до этого не дойти. Она прекрасно знает, что скамейку можно передвигать с места на место. Она также знает, какие возможности открываются перед ней, если скамейка стоит около забора. Приставьте скамейку — она тут же вскочит на нее и перепрыгнет через забор (предполагается, что ей это почему-либо нужно). Значит, она умеет предвидеть результат комбинации Х и У. Соответствующая модель есть у нее в мозгу. Но эта модель лежит мертвым грузом, ибо собака не может представить себе комбинацию XY в виде цели, к которой надо стремиться, для этого ей не хватает воображения. Мало знать, что будет, если, надо еще вообразить, что может быть. Суховатую формулу, отождествляющую мышление с управлением ассоциированием, можно перевести на менее точный, но более образный язык как следующее утверждение: человек отличается от животного тем, что он обладает воображением.

Построим простенькую модель работы воображения. Обозначим через A ситуацию, которая имеет место в данный момент, и через Z — ситуацию, которой надо достичь. Будем считать, что при заданной ситуации непосредственно достижимой является лишь часть ситуаций, и будем записывать это формулами вида

A > (B, C, H, Z),

где в скобках стоят ситуации, непосредственно достижимые из A.

Допустим, что некое животное (или человек) знает, какие ситуации достижимы из каких, т. е. в его мозгу есть ряд ассоциаций, которые можно изобразить формулами, подобными приведенной. Мы также будем считать, что для каждого перехода от данной ситуации к другой (достижимой непосредственно) известно осуществляющее его действие, но не будем вводить для него обозначения, чтобы не загромождать запись.


Если в мозгу есть именно такая ассоциация, как приведенная выше, и, следовательно, состояние Z достижимо из A, то животное сразу же выполнит нужное действие. Допустим теперь, что мозг содержит следующую совокупность ассоциаций:

A > (B, C, D),

B > (E, F),

D > (G, H, I, J),

Н > (B, C),

I > (B, C, Z).

В этой таблице нельзя отыскать действие, которое приводило бы в Z, поэтому животное, поставленное перед такой задачей, решить ее не сможет. Оно либо ничего не будет делать, либо будет метаться — совершать в беспорядке все действия, которые есть в таблице. Человек же вообразит, что он совершил действие A, чтобы понять, какие ситуации станут для него доступными в этом случае. Иначе говоря, он создаст новые ассоциации, которые можно записать так:

A > В > Е,

A > В > F.

Правда, эти ассоциации оказываются в данном случае бесполезными, но, продолжая подобные попытки, он в конце концов, найдет решение:

A > D > I > Z.

Можно, конечно, идти и с другого конца — от цели Z. Главным здесь является то, что сама таблица ассоциаций не остается неизменной, она становится объектом работы по методу проб и ошибок, пополняется новыми строчками. И эти строчки появляются не под воздействием внешней среды (которое определяет только исходный список ассоциаций), а в результате функционирования специального механизма, подчиненного своим законам и правилам.

Зачатки воображения есть и у высших животных. В частности, они проявляются, как было отмечено, в играх. У самых развитых животных — человекообразных обезьян — элементы воображения уже вполне отчетливо видны в поведении. Они проявляют сообразительность, недоступную собакам и другим животным. Известны опыты, в которых обезьяна использовала подставку (куб), чтобы достать подвешенную приманку, и даже ставила куб на куб, если это не помогало. Обезьяна может вытолкнуть из отрезка трубы приманку с помощью палки, искать подходящую палку и, наконец, расщепить ее надвое, если она оказывается слишком толстой и не входит в трубу.


Это уже можно считать началом изготовления орудий.

И все-таки граница проходит не между собакой и обезьяной, а между обезьяной и человеком. В какой-то момент способность управления ассоциированием у наших предков превысила тот порог, за которым она стала фактором, важным для выживания. И тогда эволюция пошла по пути совершенствования этой способности. Совершился метасистемный переход. Человек отделился от мира животных.

В процессе очеловечивания играли роль многие факторы и в первую очередь устройство конечностей человекообезьяны. Какие бы умные указания ни давал мозг, они пропадут впустую, если нет возможности их физической реализации. Но наличие органов, способных осуществлять тонкие действия, само по себе не породит мышления. Насекомые физически способны к очень сложным операциям, лапы ящеров могли бы, в принципе, тоже послужить исходной точкой для развития руки, а щупальца осьминога по своей конструкции совершеннее наших рук. Ведущая роль, несомненно, принадлежит мозгу. В то же время руки человекообезьяны и возможность их освобождения при ходьбе содействовали тому, что способность мозга к управлению ассоциациями стала (через посредство использования и изготовления орудий) фактором, имеющим решающее значение для выживания. В этом же направлении могли действовать и другие факторы, например резкое изменение природных условий. А может быть, играют роль еще какие-то обстоятельства. Выяснение конкретных условий происхождения человека и роли в этом процессе различных обстоятельств — проблема сложная и интересная. Над ней работают многие ученые. Но не она является предметом настоящей книги. Нам достаточно знать, что необходимое для метасистемного перехода сочетание условий осуществлялось.

Так как цели, входящие в качестве важнейших элементов в планы, суть представления, способность произвольно ассоциировать представления означает способность произвольного составления планов. Человек может решить: сначала я сделаю A, потом B, потом C и т. д. Возникает соответствующая цепочка ассоциаций.


Человек может решить: надо обязательно сделать X. Возникает ассоциация «X — надо». У животного тоже все время возникают новые конкретные планы. Но механизм их возникновения иной. Они всегда являются частью более общего (стоящего выше в иерархии) плана, а в конечном счете — инстинкта. Цели, которые ставит животное, всегда направлены на осуществление инстинктивного плана действий. Инстинкт — верховный судья поведения животного, его абсолютный и непререкаемый закон. Человек также получает в наследство определенные инстинкты, но благодаря способности управления ассоциациями он может обойти их, может создавать планы, не подчиненные инстинкту и даже враждебные ему. В отличие от животного человек сам себе ставит цели. Откуда берутся эти цели и планы, чему они служат — это другой вопрос. Мы коснемся его, когда будем говорить о человеке как о социальном существе. Сейчас нам важно лишь то, что мозг человеческого индивидуума устроен так, что дает ему возможность выйти за рамки инстинктивного поведения.


Вопросы, вопросы


Попытки заглянуть еще дальше — так далеко, как только хватает воображения, дают больше вопросов, чем ответов.

Как далеко пойдет интеграция индивидуумов? Несомненно, что в будущем (и, быть может, не слишком отдаленном) станет возможным прямой обмен информацией между нервными системами отдельных людей, их физическая интеграция. Очевидно, интеграция нервных систем должна сопровождаться созданием какой-то высшей системы управления единой нервной сетью. Как будет она восприниматься субъективно? Сохранится ли неизменным современное индивидуальное сознание, для которого высшая система управления будет чем-то вне- и сверхличным, чем-то чуждым и непосредственно недоступным? Или же, напротив, физическая интеграция породит качественно новые, высшие формы сознания, и это будет процесс, который можно описать, как слияние душ отдельных людей в единой Высшей Душе? Вторая перспектива представляется и более вероятной, и более привлекательной. Она решает и проблему противоречия между разумом и смертью. Трудно примириться с мыслью, что человечество навсегда останется совокупностью отдельных недолговечных существ, которые умирают прежде, чем смогут дождаться осуществления своих замыслов. Интеграция индивидуумов сделает новое синтетическое сознание в принципе бессмертным, как бессмертно в принципе человечество.

Но захотят ли наши потомки физической интеграции? Чего они вообще захотят? И чего они захотят хотеть? Манипулирование желаниями людей уже сейчас стало явлением, с которым нельзя не считаться, а что же будет дальше, когда структура и функционирование мозга будут детально исследованы? Не попадет ли человечество в ловушку абсолютно стабильного и субъективно абсолютно счастливого общества, различные модели которого описывают фантасты, начиная с Замятина и Хаксли.

Чтобы не попасть в такую ловушку, необходимы гарантии, что никакая структура управления не является высшей окончательно и бесповоротно, раз и навсегда. Иначе говоря, необходимы гарантии, что всегда будет возможен метасистемный переход по отношению к сколь угодно большой системе.
Возможны ли такие гарантии? Дает ли людям такие гарантии осознание необходимости метасистемного перехода для развития? И является ли сама потребность в развитии, стремление к продолжению развития, неуничтожимой? У нас есть основания надеяться, что это так. Идея эволюции, овладев сознанием человека, уходить как будто не желает. Если представить, что человечество будет существовать как гигантский часовой механизм, навечно неизменный, тождественный самому себе, и только его колесики — люди будут меняться вследствие естественного процесса рождения и смерти, то становится тошно. Это кажется равносильным тому, как если бы человечество было тотчас же уничтожено. Но будет ли так всегда казаться нашим потомкам? Быть может, сейчас, когда мы ощущаем необходимость развития, нам надо было бы попытаться как-то увековечить это ощущение? Быть может, это наш долг перед породившей нас живой материей? Допустим, мы приняли такое решение. Как его осуществить?
Поставим теперь в более общей форме вопрос о ловушках на пути развития. Общество муравьев абсолютно стабильно. Но это не потому, что оно плохо устроено: сами индивидуумы, составляющие его, таковы, что их объединение не порождает нового качества, не приводит к контакту мозгов (беднягам почти нечем контактировать). Возможно ли, чтобы отдаленные потомки муравьев или других членистоногих, стали разумными существами? Скорее всего, нет. По-видимому, членистоногие зашли в эволюционный тупик. А не находимся ли и мы в эволюционном тупике? Быть может, человек — негодный материал для интеграции, и никаких новых форм организации и сознания на этой основе не получится? Быть может, с самого начала жизнь на земле пошла по ложному пути, и одухотворение Космоса суждено осуществить каким-то другим формам жизни?
Допустим, что это не так, что природа не совершила по отношению к Земле роковой несправедливости. Теперь, когда появились сознательные существа, что должны они делать, чтобы не забрести в тупик? При таком общем вопросе можно предложить и общий ответ: сохранять хотя бы в каком-то миниатюрном, сжатом виде максимальное многообразие вариантов, не отсекать бесповоротно никаких возможностей.


Если эволюция есть блуждание в лабиринте, то, попав в точку пересечения коридоров, и, выбирая путь направо, не надо забывать, что в этом месте есть еще ход налево и на это место можно будет вернуться. Свой путь надо отмечать несмывающейся и светящейся в темноте краской. Такова именно функция науки истории. Но достаточны ли те языковые следы, которые она оставляет? Быть может, необходим сознательный параллелизм при решении всех общественных проблем?
Будем надеяться, что мы пока не совершили никакой непоправимой ошибки, и что людям удастся создать новые, фантастические с современной точки зрения формы организации материи и формы сознания. И тогда возникает последний, но зато самый волнующий вопрос: а не может ли существовать связи между сегодняшним индивидуальным сознанием каждой человеческой личности и этим будущим сверхсознанием — моста, переброшенного через время? Иначе говоря, не возможно ли все-таки в какой-то форме воскрешение личности?
Увы, все, что мы знаем в настоящее время, заставляет нас дать отрицательный ответ. Мы не видим никакой возможности этого. Нет в этом и необходимости для процесса космической эволюции. Люди не стоят того, чтобы их воскрешали, — как и обезьяны, от которых они произошли. После нас останется лишь то, что мы произвели за отведенное нам время.
Впрочем, никто не может заставить человека отказаться от надежды. В данном случае это имеет и то основание, что наш последний вопрос касается вещей, о которых мы знаем очень мало. Мы кое-что понимаем в физических и химических процессах, связанных с жизнью, мы ориентируемся также в вопросах, связанных с ощущениями, представлениями, познанием действительности. Но сознание и воля — это для нас загадка. Мы не знаем, как связаны здесь два аспекта: субъективный, внутренний, и объективный, внешний, с которым имеет дело наука. Мы не знаем даже, как поставить вопросы, на которые надо искать ответ. Здесь все неясно и загадочно. Здесь возможны большие неожиданности.
Мы построили прекрасное и величественное здание науки.Высоко в небо возносятся его ажурные языковые конструкции. Но бросьте взгляд в пространство между опорами, арками, перекрытиями: он уйдет в пустоту. Вглядитесь внимательнее, и там, вдали, в черной глубине, вы увидите чьи-то немигающие зеленые глаза. Это смотрит на вас ТАЙНА.
1 Данные взяты из книги: Добров Г.Н. Наука о науке. Киев, 1966.
2 Данные взяты из работы: Прайс Д. Малая наука, большая наука // Наука о науке: Сб. ст. М.: Прогресс,1966.
3 Cм.: Сноу Ч.П. Две культуры. М.: Прогресс, 1971.

Возникновение цивилизации


Мы знаем, что переход этот произошел. Возникновение критического мышления — важнейшая веха эволюции, следующая после появления человека. Критическое мышление и цивилизация возникают одновременно и развиваются в тесной взаимосвязи. Увеличение производительности труда, контакты между различными племенными культурами, разложение общества на классы — все это неумолимо расшатывает традиционное племенное мышление, заставляет человека задуматься над содержанием своих представлений, сравнить их с представлениями других культур; таким образом утверждается и постепенно входит в норму критический характер мышления. С другой стороны, критическое мышление раскрепощает человека, приводит к резкому росту производительности труда, появлению новых форм поведения. Оба процесса поддерживают и усиливают друг друга, общество начинает бурно развиваться. Происходит как бы переворачивание вектора общественного интереса: в первобытном обществе он направлен назад, в прошлое, на соблюдение законов предков, в развивающейся цивилизации он, по крайней мере у части общества («творческого меньшинства» по А. Тойнби), направлен вперед, в будущее, на изменение существующего положения. Обращение языковой деятельности на самое себя порождает эффект лестницы: каждый уровень логического (языкового) мышления, возникший в результате анализа логического мышления, сам становится объектом логического анализа. Критическое мышление есть ультраметасистема, способная к саморазвитию. Вследствие метасистемного перехода культура приобретает динамизм, собственный внутренний импульс к развитию. Первобытные племенные культуры эволюционируют благодаря скрещиванию и борьбе за существование между ними подобно тому, как это происходит в животном мире. Цивилизация эволюционирует под действием внутренних факторов. Правда, и цивилизациям прошлого свойственно было останавливаться в развитии, достигая какого-то потолка, но скачки все же были чрезвычайно велики по сравнению со скачками в первобытных культурах и они увеличивались по мере утверждения критического мышления.
Современная цивилизация глобальна, так что фактор ее борьбы за существование как целого (т. е. с конкурентами) отпадает, и все ее развитие происходит исключительно под действием внутренних противоречий. В сущности, только с переходом на уровень критического мышления проявилась революционная сущность возникновения мышления и по настоящему началась Эра Разума.

В процессе метасистемного перехода бывает, как мы знаем, момент, когда новое качество не оставляющим сомнений образом демонстрирует свои преимущества, и с этого момента метасистемный переход можно считать свершившимся окончательно и бесповоротно. В переходе к критическому мышлению этот момент — культура древней Греции, которую совершенно справедливо называют колыбелью современной цивилизации и культуры. В это время — около двух с половиной тысячелетий назад — возникли философия, логика и математика (математика в полном смысле слова, т. е. включающая доказательства). И с этого времени критическое мышление стало признанной и необходимой основой развивающейся культуры.

1 Леви-Брюль Л. Первобытное мышление. М.: Атеист, 1930.


Вступительное слово


В этой книге, первое издание которой стало библиографической редкостью сразу после выхода в 1993 году, выдающийся ученый Валентин Федорович Турчин излагает свою концепцию метасистемного перехода, объясняющую структуру скачков в эволюции и указывающую “почки роста” с кибернетической точки зрения. Его философия предлагает ответы на мировоззренческие вопросы — “Кто я?”, “Откуда я пришел и куда иду?”, “Сколь истинно мое знание?”, “Что есть добро и что есть зло?”.

Концепция метасистемного перехода проходит красной нитью через все работы В.Ф.Турчина. В 1976 году он написал следующую после “Феномена науки” книгу “Инерция страха. Социализм и тоталитаризм”1. В ней был дан анализ состояния советского общества как эволюционного тупика и высказаны предположения о том, как должно измениться общество, чтобы оно было способно к дальнейшему неограниченному развитию с высокими целями. В математике он сконструировал новые кибернетические основания2, а в программировании и информатике разработал метаязык Рефал и заложил основы метавычислений, предложив качественно новый метод преобразования и оптимизации программ — суперомпиляцию3. Эти достижения уже используются в высокотехнологичных коммерческих проектах. Их успешное применение и дальнейшее развитие требует понимания лежащей в их основе концепции метасистемного перехода.

Кибернетический подход Турчина развивается сегодня международным коллективом ученых в рамках Интернет-проекта Principia Cybernetica4, цель которого — выработка кибернетического взгляда на все явления вплоть до вопросов о смысле жизни и “Что есть Бог?”.

В конце XX века мы с Вами стали свидетелями крупных преобразований как в промышленности и технологиях — компьютерная и информационная революции, так и в общественном развитии. Прочитав эту книгу, Вы поймете, как и почему это было закономерно (хотя и не предопределено), какие предшествующие события в развитии материальной и духовной культуры человечества готовили эти скачки и что можно ожидать в ближайшие десятилетия.


Дорогой читатель! Хотелось ли Вам в своей научной, технической или другой деятельности полагаться не на удачу в случайных блужданиях, а руководствоваться целостной системой понятий, которая помогала бы “за деревьями видеть лес”, отличать важное от несущественного, понимать, куда идет развитие, чтобы прилагать свои творческие усилия в плодотворном направлении? Если да, то смело открывайте эту книгу!

Андрей Климов

1 Книга В.Ф.Турчина “Инерция страха. Социализм и тоталитаризм” была издана только в английском переводе: “The Inertia of Fear and the Scientific Worldview”, издательство “Хроника”, 1978. На русском языке она доступна в Интернете в Открытой Русской Электронной Библиотеке — http://orel.rsl.ru/.

2 “A constructive interpretation of the full set theory”, The Journal of Symbolic Logic, Vol. 52, No. 1, March 1987.

3 Информация о работах по Рефалу и суперкомпиляции доступна в Интернете по адресу http://www.refal.net/.

4 Адреса проекта Principia Cybernetica в Интернете — http://pespmc1.vub.ac.be/ и http://pcp.lanl.gov/.


Что такое научное познание действительности?


Что такое научное познание действительности? Ответить на этот вопрос с научной же точки зрения — значит взглянуть на человечество как бы со стороны, из космического пространства. Тогда люди предстанут в виде определенного рода материальных образований, совершающих определенные действия, в частности произносящих какие-то слова и пишущих какие-то знаки. Как возникают эти действия в процессе эволюции жизни? Можно ли объяснить их появление на основе каких-то общих принципов, относящихся к процессу эволюции? Что представляет собой научная деятельность в свете этих общих принципов? Таковы те вопросы, на которые мы попытаемся ответить в этой книге.
Принципы, столь общие, что они применимы как к развитию науки, так и к биологической эволюции, требуют для своего выражения столь же общих понятий. Такие понятия дает кибернетика — наука о связях, управлении и организации в объектах любой природы. В кибернетических понятиях с равным успехом описываются явления физико-химические, биологические, социальные. Именно развитие кибернетики и особенно ее успехи в описании и моделировании целенаправленного поведения и распознавания понятий сделали возможным написание этой книги. Поэтому более точно ее предмет можно определить так: кибернетический подход к науке как к изучаемому явлению.
Идейным стержнем книги является понятие о метасистемном переходе, т.е. переходе от кибернетической системы к метасистеме, включающей в себя множество систем типа исходной, организованных и управляемых определенным образом. Сначала это понятие было положено автором в основу анализа развития знаковых систем, используемых наукой. Затем, однако, оказалось, что исследование под этим углом зрения всей эволюции жизни на Земле позволяет воссоздать связную и подчиненную единым закономерностям картину или, лучше сказать, киноленту, которая начинается с первых живых клеток и кончается современными научными теориями и системой промышленного производства. Эта кинолента указывает, в частности, место феномена науки в ряду других явлений мира и раскрывает его значение на фоне общей картины эволюции Вселенной.
Так возник замысел настоящей книги. Сколь убедительно нарисована картина, мы предоставим судить читателю.
В соответствии с замыслом книги в ней излагается много фактов и концепций, которые весьма разнородны. Одни из фактов хорошо известны, о таких мы стараемся говорить кратко, приводя их в систему и соотнося с основной идеей книги. Другие факты менее известны, тогда мы останавливаемся на них подробнее. То же относится и к концепциям: некоторые общеприняты, другие менее известны и, возможно, спорны. Разнородность материала приводит также к тому, что разные разделы книги требуют от читателя различных усилий. Одни из них описательны и легки для чтения. В других местах, приходится углубляться в довольно специальные вопросы. Поскольку книга рассчитана на широкий круг читателей и не предполагает познаний вне рамок программы средней школы, мы во всех таких случаях сообщаем читателю необходимые теоретические сведения. Эти страницы потребуют от неподготовленного читателя определенной работы.
Важное место в книге отводится проблемам теории познания и логики; они трактуются, конечно, с кибернетических позиций. Кибернетика сейчас ведет наступление на традиционную философскую гносеологию, давая новую, естественно-научную интерпретацию одним ее понятиям и отвергая другие как несостоятельные. Некоторые философы противятся этому наступлению, считая его посягательством на свою территорию. Они обвиняют кибернетиков в “огрублении” и “упрощении” истины, в игнорировании “принципиального различия” между формами движения материи (и это несмотря на тезис о единстве мира!). Но философ, которому чуждо землевладельческое отношение к различным областям знания, должен приветствовать атаки кибернетиков. В свое время развитие физики и астрономии уничтожило натурфилософию, избавив философов от необходимости говорить приблизительно о том, о чем ученые могут говорить точно. Очевидно, развитие кибернетики сделает то же с философской гносеологией или — скажем более осторожно — со значительной ее частью.


Этому надо только радоваться. У философов всегда будет достаточно своих забот: наука избавляет их от одних, но доставляет другие.
Так как книга посвящена науке в целом как определенному способу взаимодействия человеческого общества с окружающей средой, в ней почти ничего не говорится о конкретных естественнонаучных дисциплинах; изложение остается целиком на уровне понятий кибернетики, логики и математики, которые общезначимы для всей современной науки. Исключение делается только для некоторых представлений современной физики, имеющих принципиальную важность для теории знаковых систем. В нашу задачу не входит также конкретный анализ взаимодействия науки с производством и общественной жизнью. Это отдельный вопрос, которому посвящена обширная литература; мы и здесь остаемся на уровне общих понятий кибернетики.
Попытки соединить в целостной картине большое количество материала из различных областей знания всегда чреваты опасностью искажения деталей, ибо человек не может быть специалистом во всем. Поскольку данная книга является именно такой попыткой, весьма вероятно, что специалисты в затронутых здесь областях науки найдут в ней упущения и неточности. Ничего не поделаешь, такова цена, которую приходится платить за картины с большим охватом, но такие картины необходимы. Автору остается только надеяться, что картина, нарисованная в этой книге, содержит лишь такие погрешности в деталях, которые могут быть устранены без ущерба для картины в целом.

Высший уровень иерархии


Вселенная эволюционирует. Организация материи постоянно усложняется. Это усложнение происходит путем метасистемных переходов — возникновения новых уровней организации, которые представляют собой уровни иерархии по управлению. Неорганический мир, растения, животные, человек — таков путь эволюции, пройденный на нашей планете, и, насколько нам известно, это самое далекое продвижение вперед в окружающей нас части космического пространства. Представляется также весьма вероятным — вершина эволюции всего Космоса. Во всяком случае, у нас нет не только прямых указаний, но даже и малейших намеков на существование более высокого уровня организации, поэтому нам ничего не остается, как считать себя первыми.

Появление человека знаменует начало Эры Разума, ведущей силой развития становится сознательное человеческое творчество, высшим уровнем организации — культура человеческого общества. Развиваясь, культура порождает внутри себя следующий уровень иерархии — критическое мышление, которое в свою очередь порождает современную науку — построение моделей действительности с помощью знаковых систем. Это новые модели, их не было и не могло быть в мозге отдельного человеческого существа, взятого вне цивилизации и культуры, и они в колоссальной степени увеличивают власть человека над природой. Они образуют непрерывно совершенствующийся и развивающийся сверхмозг того сверхсущества, которым является человечество в целом. Итак, наука представляет высший уровень иерархии в организации космической материи, она — верхушечная почка растущего дерева, активная точка эволюции Вселенной. В этом значение космического феномена науки как части феномена человека.



Вызов по дополнению


Схема на рис. 3.3 может вызвать недоумение. Говоря об ассоциации представлений, мы обычно подразумеваем нечто вроде двойной связи между Т1 и T2, когда Т1 вызывает T2, а T2 вызывает Т1. На нашей же схеме оба представления вызывают нечто третье, а именно U, причем обратные стрелки от U к Т1 и T2 отсутствуют. В действительности же схема на рис. 3.3 более точно соответствует понятию ассоциации представлений, чем схема с двойной связью. В частности, она содержит вызов, в определенном смысле, представлением Т1 представления T2 (и наоборот), но это вызов по дополнению. Представление U содержит в себе как Т1 так и T2, ведь оно задумано нашей нервной системой как эквивалентное одновременному наличию Т1 и T2. Поэтому когда Т1 в отсутствие T2 вызывает U, то в этом самом U неявно содержится T2. Вызывая U, мы как бы дополняем Т1 несуществующим T2.

Этот процесс мысленного дополнения никак не связан с тем фактом, что ассоциация вырабатывается путем обучения. Здесь играет роль только сам способ обработки информации мозгом. Когда работают врожденные механизмы низших уровней, эффект дополнения проявляется еще более ярко, ибо никаким обучением, никакой тренировкой вы его не ослабите и не усилите.

Рис. 3.4. точки образуют линию

Взгляните на рис. 3.4. Вы видите на нем не только точки, но и линию — дугу окружности. На самом деле никакой линии там нет. Но вы мысленно дополняете рисунок так, чтобы они образовали сплошную линию. В терминах рис. 3.3 здесь Т1 — реально существующие точки, U - линия, T2 — дополнительные точки. Тот факт, что вы усматриваете несуществующую линию, свидетельствует о наличии в мозгу (или в сетчатке) классификаторов, создающих представление U.

Почему возникли эти классификаторы? Потому что ситуации, поступающие на вход нашего зрительного аппарата, обладают свойством непрерывности. Освещенности соседних рецепторов сетчатки сильно коррелированы. Изображение на сетчатке — не мозаичный набор точек, а набор световых пятен. Значит, переводя изображение на язык пятен, мозг (мы говорим «мозг» условно, не задаваясь вопросом, где на самом деле осуществляется перевод) отбросит бесполезную информацию и сохранит полезную. Так как состоять из пятен — всеобщее свойство изображений на сетчатке, язык пятен должен располагаться на одном из уровней и быть врожденным. Линия, которую мы «видим» на рис. 3.4, — это длинное и узкое пятно.



Зачем нужны ассоциации представлений


Эти предварительные соображения нам потребовались для того, чтобы лучше уяснить понятие ассоциации и связь между функциональным описанием через ассоциации и структурным — через классификаторы.

Поскольку с каждым классификатором можно связать одно или несколько обобщенных состояний, иерархии классификаторов соответствует иерархия обобщенных состояний. Вводя понятие классификатора, мы указываем, что каждому состоянию классификатора (теперь мы можем сказать: каждому обобщенному состоянию системы в целом) соответствует наличие определенного понятия на входе системы, т. е. принадлежность входной ситуации к определенному множеству. Понятия «понятие» (аристотелевское) и «обобщенное состояние» близки между собой: и то и другое — множества состояний. Но «обобщенное состояние» — более общее понятие, оно может учитывать состояние не только рецепторов, но и любых других подсистем, в частности классификаторов. Последнее необходимо, чтобы следить за динамикой состояния системы в процессе обработки информации.

Посмотрим, как связаны между собой обобщенные состояния K-го и следующего K+1-го уровня иерархии. Основная задача классификаторов, как мы знаем, сохранение «существенной» и отбрасывание «несущественной» информации. Это значит, что существует какое-то множество состояний K-го уровня, от каждого из которых на функциональной схеме отходит стрелка к одному и тому же состоянию K+1-го уровня. На рис. 3.3 представления (обобщенные состояния) Т1 и T2 в равной мере вызывают представление U. Если Т1 и T2 всегда сопутствуют друг другу, то такая схема будет заведомо выгодна животному. Ему не надо знать, что имеет место как Т1 так и T2, достаточно знать, что имеет место U. Таким образом и осуществляется отбрасывание лишней информации, сжатие ее полезной части. Сжатие информации оказывается возможным благодаря тому, что Т1 и T2 всегда встречаются вместе. Это есть некий факт, внешний по отношению к нервной системе и относящийся лишь к потоку ситуаций, подаваемых на ее вход.
Он свидетельствует о наличии определенной организованности потока ситуаций, являющейся следствием организованности среды, окружающей животное. Устройство нервной системы и ее деятельность — система рефлексов — отражают свойства внешней среды. Происходит это потому, что, пробуя разные варианты отбрасывания информации, природа находит, в конце концов, такой вариант, когда отбрасывается в самом деле лишняя информация, являющаяся таковой вследствие частичной организованности внешней среды.



Рис. 3.3. Ассоциация представлений

На этапе безусловного рефлекса структура таких связей, как изображенные на рис. 3.3, не меняется на протяжении жизни животного и одинакова у всех животных данного вида. Но, как мы уже говорили, такое положение неудовлетворительно. Наступает метасистемный переход, и связи между обобщенными состояниями становятся управляемыми. Теперь, если в индивидуальном опыте животного Т1 и T2 всегда (или хотя бы достаточно часто) сопутствуют друг другу, в его мозгу образуются новые связи, не детерминированные наследственностью однозначно. Это и есть ассоциирование - образование новой ассоциации представлений.

Ясно, что ассоциации образуются между представлениями высшего уровня иерархии. Таким образом, самые общие корреляции во внешней среде, одинаковые для всех времен и всех мест обитания, отражаются в постоянном устройстве нижних уровней классификаторов. Более частые корреляции отражаются переменными связями на высшем уровне.


Запись чисел


Запись чисел в древности (рис. 9.1) наглядно демонстрирует отношение к числу как к непосредственной модели действительности. Возьмем, например, египетскую систему. Она была основана на десятичном принципе и содержала иероглифы для единицы (вертикальная черточка) и «больших единиц». Чтобы изобразить число, надо было повторить иероглиф столько раз, сколько раз он входит в число. Аналогичным образом записывали числа другие народы древности. К этой простейшей форме записи примыкает и римская система. Она отличается лишь тем, что когда меньшая единица стоит слева от большей, ее надо не прибавлять, а отнимать. Это небольшое усовершенствование (вместе с введением промежуточных единиц: V, L, D) устранило необходимость выписывать подряд много одинаковых символов, и сделало римскую систему столь конкурентоспособной, что она существует и по сей день.

Рис.9.1. Запись чисел различными народами древности (из книги: Глейзер Г.И. История математики в школе. М., 1964)

Еще более радикальный способ избежать громоздкого повторения символов — это обозначить ключевые числа (меньше десяти, затем круглые десятки, сотни и т. д.) последовательными буквами алфавита. Так именно и поступили греки около VIII в. до н. э. Для единиц, десятков и сотен им хватило алфавита; числа, большие тысячи, изображались буквами со штрихом внизу слева. Так ? обозначало 2, ? — 20, '? — 2000. Эту систему переняли у греков многие народы: армяне, евреи, славяне и другие. При алфавитной нумерации «модельный» вид числа совершенно исчезает, оно становится просто символом. К тому же результату приводит и скорописное упрощение знаков, имеющих первоначально модельный вид.

Рис. 9.2. Числовые знаки кхарошти

Современные европейские цифры, называемые в отличие от римских «арабскими», ибо они проникли к нам через арабов, имеют, как полагают, индийское происхождение. Не все специалисты соглашаются с этой гипотезой. В индийских письменных документах цифры встречаются впервые в III в. до н. э. В это время в ходу было два вида письма: кхарошти и брахми — и каждое из них имело свои числовые знаки (рис. 9.2 и 9.3).
Система кхарошти интересна тем, что в качестве промежуточного этапа между единицей и десятью выбирается число четыре. Вероятно, косой крест в качестве четверки соблазнил создателей чисел кхарошти простотой написания при полном сохранении модельности (четыре луча). Числовые знаки брахми более экономны. Считают, что первые девять знаков брахми породили в конечном счете современные цифры (рис. 9.4).



Рис. 9.3. Числовые знаки брахми

Утрата числами модельного вида с лихвой компенсировалась использованием в древнем мире абака — счетной доски с параллельными прорезями, по которым передвигались камешки. Разные прорези соответствовали единицам разного достоинства. Абак изобрели, вероятно, еще вавилоняне. Он служил для выполнения всех четырех действий арифметики. Греческие купцы широко пользовались абаком, того же типа счетные доски были в ходу у римлян. Латинское слово calculus (камешек) стало обозначать также «исчисление». Римляне же придумали надевать счетные камешки на рейки; так возникли счеты, которыми у нас пользуются и до сих пор. Эти простейшие счетные приборы имели большое значение, и только после того, как полностью сформировалась позиционная система счисления, они стали уступать место выкладкам на грифельной доске или бумаге.



Рис. 9.4. Генеалогия современных цифр (по Menninger, Zahlwort, Ziffer)