Как
создать сферу
Рис. 6.3. Деление треугольника икосаэдра
//=== Команды OpenGL для изображения одного треугольника void setTria(double *vl, double *v2, double *v3) { //====== Нормаль и вершина задаются одним вектором
glNormal3dv(vl);
glVertex3dv(vl);
glNormalSdv (v2);
glVertex3dv(v2);
glNormal3dv(v3);
glVertex3dv(v3); glEnd() ; }
//====== Генерация внутренних треугольников
void Split(double *vl, double *v2, double *v3) {
//====== Промежуточные вершины
double v!2[3], v23[3], v31[3);
for (int l=0; l< 3; i++) {
//====== Можно не делить пополам,
//====== так как будем нормировать
v12[i] = vl[i]+v2[i];
v23[i] = v2[i]+v3[i];
v31 [i] = v3[i]+vl [i]; } //====== Нормируем три новые вершины
Scale(v!2); Scale(v23); Scale(v31); //====== и рисуем четыре треугольника
setTria(vl, v!2, v31); setTria (v2, v23, v!2); setTria(v3, v31, v23); setTria(v!2,v23, v31); }
Вставьте эти глобальные функции в файл и дайте следующую версию функцию DrawScene, в которой отсутствует вызов функции getNorm для точного вычисления нормали, но есть вызов функции Split для каждой из 20 граней икосаэдра. В результате мы получаем фигуру из 80 треугольных граней, которая значительно ближе к сфере, чем икосаэдр:
void DrawScene() { static double
angle = 3. * atan(l.)/2.5, V = cos (angle), W = sin (angle),
v[12] [3] =
{-V,0.,W}, {V,0.,W}, {-V,.0.,-W},
(V,0.,-W), {0.,W,V}, {0.,W,-V},
(0.,-W,V), (0.,-W,-V), {W,V,0.},
{-W,V,0.}, {W,-V,0.}, {-W,-V,0.}
};
static GLuint id[20][3] = {
(0,1, 4), (0,4, 9), {9,4, 5}, (4,8, 5), (4,1,8),
(8,1,10), (8,10,3), (5,8, 3), (5,3, 2), (2,3,7),
(7,3,10), (7,10,6), (7,6,11), (11,6,0), (0,6,1),
(6,10,1), (9,11,0), (9,2,11), (9,5, 2), (7,11,2) };
glNewList(l,GL_COMPILE); glColor3d (1., 0.4, 1.) ; glBegin(GLJTRIANGLES);
for (int i = 0; i < 20; i++)
Split (v[id[i][0]], v[id[i][l]], v[id[i] [2] ]) ;
glEnd() ; glEndList () ; }
На этой стадии я рекомендую посмотреть, какие интересные и неожиданные результаты могут быть получены вследствие ошибок. Все мы ошибаемся, вот и я так долго возился с направлением обхода и со знаком нормали, что в промежуточных вариантах получал чудовищные комбинации. Многие из них «канули в Лету», но один любопытный вариант легко смоделировать. Если ошибки происходят в условиях симметричного отражения, то возникают ситуации, сходные со случайными изменениями узоров в калейдоскопе. Замените на обратные знаки компонентов вектора в функции Scale. Это действие в предыдущих версиях программы было эквивалентно изменению знака нормали. Найдите строку, похожую на ту, что приведена ниже, и замените знаки так, как показано, на минусы.
v[0] /= -d; v[l] /= -d; v[2] /= -d;
Назад | Начало | Вперед |